
  

Abstract— Since microarray data acquire tens of thousands of 

gene expression values simultaneously, they could be very useful in 

identifying the phenotypes of diseases. However, the results of 

analyzing several microarray datasets which were independently 

carried out with the same biological objectives, could turn out to 

be different. One of the main reasons is attributable to the limited 

number of samples involved in one microarray experiment. In 

order to increase the classification accuracy, it is desirable to 

augment the sample size by integrating and maximizing the use of 

independently-conducted microarray datasets. In this paper, we 

propose a two-stage approach which firstly integrates individual 

microarray datasets to overcome the problem caused by limited 

number of samples, and identifies informative genes, secondly 

builds a classifier using only the informative genes. The classifier 

from large samples by integrating independent microarray 

datasets achieves high accuracy, sensitivity, and specificity on 

independent test sample dataset. 

 
Index Terms—Bioinformatics, Microarray data analysis, 

Microarray data Integration, Microarray classification, 

Informative gene selection 

 

I. INTRODUCTION 

ECENTLY, researchers have examined the gene 

expression pattern which is specific to tumor-cell and made 

use of molecular characteristics of tumor tissue for diagnosis 

purpose. Since microarray technology is capable of screening 

thousands of genes simultaneously, it is expected that 

microarray data will bring a drastic advancements in the field of 

tumor diagnosis.  

As shown in Fig. 1, microarray data are organized as matrices 

such that each column represents a sample, each row represents 

a gene, and each cell represents the expression value of a 

particular gene in a particular sample. Since simultaneous 

measurements of expression levels for several tens of thousands 

of probes are now feasible, a statistical methodology is required 

for analysis and interpretation of a large volume of data.  
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 C1 C2 

 S1 S2 S3 S4 S5 S6 

G1 3 5 7 9 11 13 

G2 15 32 23 12 2 3 

G3 … … … … … … 

G4       

G5       

G6       

Fig. 1. A microarray data 

(Si is a sample, Gi is a gene, and C1, C2 is a class label each) 

 

When a statistical method is employed, increasing sample 

size is quite desirable for more reliable classification results. 

Especially in the tumor related research, the analysis with a 

large number of samples is quite essential in order to deduce a 

meaningful conclusion from data. Recently, Rhodes[13] has 

proposed a meta-analysis of multiple datasets that address 

similar hypotheses in order to validate and statistically assess all 

of the positive results simultaneously.  

Considering only the microarray data with the same 

experimental objectives, differences in microarray platform, set 

of genes, technology and protocols used in different labs, still 

lead to difficulties in integrating microarray data across 

experiments. How to combine the data(gene expression levels) 

in different microarrays is a challenging problem, because these 

gene expression levels are not necessarily directly comparable. 

In this regard, we propose a method to integrate independent 

microarray datasets, and build a classifier through two stages.  

In the first stage, we apply the integration algorithms 

combined with filtering methods to select a set of informative 

genes. Our integration algorithms do not require massive 

computation for normalization. Our informative gene filtering 

algorithm is a rank based approach within a sample. In the 

second stage, we build a classifier using only the pre-selected 

informative genes, and the biological interpretation of the 

classifier is relatively simple. Our classifier consists of K (≥ 5) 

rules where each rule has a relationship among three genes and a 

class label. Since this second stage of building a classifier is 

using only the pre-selected genes relevant to the classification, it 

is capable of increasing classification accuracy while offering 

affordable computation time even for integrated microarray 

datasets of large sample size. The experimental results of our 

system turn out to offer better classification accuracy compared 

with conventional approaches as the sample size of the training 

datasets is getting larger. Our two-stage system effectively 
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maximizes the use of the accumulated independent microarray 

datasets, and sheds light on a new paradigm in the field of 

microarray data integration.  

II. RELATED WORKS 

A.  Microarray Data Integration 

Until recently, several methods have been proposed for 

microarray data integration. One of them uses a meta-mining 

technique [5]. This is a method that integrates and analyzes 

microarray experiment results individually obtained. However, 

because the sample size of each individual experiment is 

generally small, there are many cases where the experimental 

results themselves are not reliable, and the integration of these 

results may bring forth an even worse analysis. Another method 

of integration is to normalize the data obtained from individual 

research to values having a common scale and then combine 

them [9]. The most representative example is the case of 

transforming the data to Z-Scores and combining them. 

However, this method, which must go through a massive 

normalization process, costs too much during the preprocessing 

stage. Studies presenting data integration models besides these 

include a method [10] that uses Correlation Signature in 

heterogeneous microarray data integration. 

B. Informative Gene Identification 

The greatest restraint in analyzing microarray data is that the 

number of genes is far bigger than the number of samples 

participating in the experiment [7]. In reality, however, the 

number of genes that affect classification is very limited, and 

most genes are noise genes that do not affect class 

discrimination. Informative genes, as shown in Fig. 2, can be 

defined as genes showing high expression values on the whole 

in Class C1 and low expression values on the whole in Class C2. 

On the other hand, genes that do not provide consistent level of 

expression values for specific classes can be regarded as noise 

genes that do not have any relevancy [18]. Therefore, it is 

rational to first identify only the relevant genes that participate 

in phenotype identification of specific diseases, and then come 

up with the classification method only using those genes. 

  
Fig. 2. An informative gene viewed as a type of expression value. 

 

The process that eliminates genes that are not associated with 

the phenotype of a disease and identifies only the informative 

genes is called the feature selection, and this is very important to 

microarray data analysis [2]. Currently, various methods are 

being presented to precisely and effectively select these 

informative genes. The linear combination method like the PCA 

(Principal Component Analysis) [3] is the one of representative 

methods in feature selection. The PCA method does reduce the 

dimension of microarray data by using eigen vectors, but it does 

not individually find genes that are relevant to classification. As 

another typical feature selection method, the parametric method 

assumes a statistical model representing the data, like t-statistics 

or the Golub [8] method, and it saves parameters (ex. mean and 

variance) that can represent the model. Since this method 

replaces thousands of gene expression values with very small 

number of parameters, it has the problem of possibly creating 

loss of information. On the other hand, the nonparametric 

method [2][14] lines all sample values of a single gene, and 

calculates the score (degree of interrupting a complete 

separation) of how much that gene was differently expressed in 

the two class groups. When the gene is considered as a feature, 

the method that is most commonly used among the feature 

selection methods is the rank-based approach. The rank-based 

feature selection method measures how much more significant 

each feature is than the other features in statistical values, and 

then ranks them and selects the top ranked features. In these 

approaches, the most popular methods are Information Gain 

[21], Relief-F [15], and the application using Kendall’s 

Correlation Coefficient [1]. 

The Information Gain method is an algorithm that uses 

entropy. Entropy can be defined as the extent of disorder. When 

X is genes and Y is class label (normal or tumor), entropy 

formula is as follows. 
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Then, the Information Gain values (IG) that we want to find 

are as follows. 

)|()()|( XYHYHXYIG −=  

After computing these values for all the genes, the genes that 

have the high information gain values are qualified as 

informative genes. 

 

The basic idea of Relief-F is that each gene’s weight is 

calculated by finding the F closest samples (half from the same 

class (hit), and others from another class (miss)) to each sample. 

If A is a selected sample and G is a selected gene, weight of the 

gene is increased in case of hit by the distance between A and hit 

sample, and decreased in case of miss by the distance between A 

and missed sample. After performing these computation and 

aggregation for all, k-genes that have the highest weight are 

selected.  

Park’s method [14] builds a binary sequence for a gene, 

calculates a score measuring how differently the genes are 

Class C1             Class C2 

Ideal Informative Genes 

Real Informative Genes 

Irrelevant Genes 
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expressed in the two class groups, by using Kendall’s 

Correlation Coefficient [1]. His method which can be only 

applicable to a single microarray dataset defines the score as the 

smallest number of swaps of consecutive digits necessary to 

arrive at a perfect splitting, with all the 0's on the left and all the 

1's on the right. This is shown in Fig. 3. 

 

score data Positions swapped 

 0 1 1 0 0 1  

+1 0 1 0 1 0 1 3 and 4 

+1 0 0 1 1 0 1 2 and 3 

+1 0 0 1 0 1 1 4 and 5 

+1 0 0 0 1 1 1 3 and 4 
Fig. 3. The scoring function in Park's method 

 

All of the methods mentioned above use the expression value 

of each gene as it is, and there are no consideration regarding the 

integration and normalization of the microarray data. 

C. Classification 

The most representative of the numerous classification 

approaches are the SVM [4][19] and the k-Nearest Neighbor [6] 

methods. The SVM is based on a machine learning algorithm, 

and it proceeds by learning the linear decision rules, which are 

represented by hyper planes. The SVM is not only used in 

microarray classification but also in other various areas, such as 

regression analysis and density prediction. To apply the SVM to 

microarray data, because it experimentally needs various types 

of parameter adjustments, it has the weakness of being fairly 

complicated. The k-Nearest Neighbor (k-NN) [6] is an 

algorithm that classifies samples by selecting similar ones from 

the individual training dataset of the new sample. This k-NN 

algorithm has the weakness of not providing good efficiency 

when granting equal weights to all genes.  

Among other classification approaches, there are 

classification methods that do not use parameters but adopt a 

data-driven machine learning approach, which is called the TSP 

(Top Scoring Pair) [22], proposed by Xu, and the k-TSP [17] 

method, proposed by Tan. The TSP is an algorithm that finds a 

pair of genes with the highest score. For each gene pair, Xi, Xj, 

the score is the difference of the relative frequencies of 

occurrences of Xi < Xj in each class. The higher the score, the 

better the corresponding gene pair discriminates the two classes. 

Only one pair of genes whose score is the highest is a TSP 

classifier. The k-TSP classifier extends TSP, and consists of k 

top-scoring pairs of genes that achieve the best score. For the 

TSP approach, it is easy to interpret the classifier since just two 

genes become a single classifier. However, it is plausible that 

TSP may change even with a small alternation in the training 

datasets. Also it could be possible that the test sample of 

independent microarray data does not contain those genes when 

one wants to predict the class of the test sample. In this regard 

we are proposing the more reliable classification method which 

extends the number of genes involved in each rule, and also 

extends the number of rules in a classifier. TSP and k-TSP 

proceed to build a classifier without the step of first extracting 

the informative genes. Since all the genes in the microarray 

datasets are employed in the classification stage, these methods 

are computationally expensive as the microarray datasets are 

getting integrated. In this paper, we start the stage of building a 

classifier with much reduced, relevant informative genes 

generated through the first stage. 

III. SYSTEM OVERVIEW 

The overall system overview is as shown in Fig. 4. In the first 

stage, the integration of independently generated microarray 

datasets is being accomplished. Independent microarray dataset 

has different probe sets and the scale of expression value in each 

microarray dataset is varied. First of all only the common genes 

in all microarray datasets are extracted. Then the expression 

value of each sample in each experiment is transformed into a 

rank value within the sample. Once the expression values are 

changed to rank values, the integration of samples originated 

from different experiments becomes feasible, as long as their 

gene order is the same. Afterwards, a score that measures how 

differently a gene is expressed in the two class groups is 

calculated for each gene. At this stage, genes with a very small 

score or a very large score could be informative genes. In the 

second stage, a classifier is built by using only the informative 

genes that were identified in stage 1. For each set of three genes, 

Xi, Xj, Xk, one can establish six( 3! ) magnitude relationships by 

comparing the rank values of the three genes. For each 

relationship, among the samples with class C1 as their label, the 

number of samples that satisfy the relationship is divided by the 

number of C1 samples and saved, and likewise, among the 

samples with class C2 as their label, the number of samples that 

satisfy the relationship is divided by the number of C2 samples 

and saved. For every relationship, the difference of these two 

values is calculated. A relationship with high difference 

represents a discriminative classification rule. The classifier 

consists of k classification rules. The parameter, k is determined 

by applying LOOCV (Leave One Out Cross Validation) to the 

training dataset. The LOOCV method is an approach that uses 
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Fig. 4. Overview of our system 
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all the samples except for one sample in a microarray dataset, 

builds a classifier, and measures the classifier’s accuracy by 

applying it to the single sample that was excluded. Each 

classification rule consists of a set of three genes, the magnitude 

relationship among those three genes, and the prevalent class 

label of the relationship. Given a new test sample, one can apply 

the classifier to the sample, predict the class label of the test 

sample by majority voting, and compare this predicted class 

with the real class of the test sample. 

IV. SYSTEM IMPLEMENTATION 

This section describes the two-stage processing algorithm on 

the microarray data explained in the previous section. In 

subsection A., the integration procedure of microarray datasets 

and informative gene selection algorithm are presented. In 

subsection B., the k-TST (k Top Scoring Triple) classification 

method, which compares the magnitude relationship among 

three genes, converts the relationship into a score, and builds a 

classifier which consists of k top-scoring relationships is 

presented. 

A. Microarray Data Integration and Informative Gene 

Identification 

As shown in Fig. 5, from the microarray datasets that were 

generated independently but have the same experimental 

objectives, only the set of common genes is extracted, as in Fig. 

6. 

 
Fig. 5. The independently generated microarray data of prostate cancer 

 

 
Fig. 6. Extraction of the set of common genes among microarray datasets 

 

 
Fig. 7. Microarray data expressed as ranks within each sample 

 

Even if the set of common genes has the same order, because 

of different experimental condition or protocol, the scale of the 

expression value for each microarray data may be quite different, 

and a direct integration is inappropriate. We use the rank of 

expression value for the corresponding gene within each sample 

rather than using the actual expression value in order to make 

the direct integration possible. Accordingly, as shown in Fig. 7, 

the expression values are all converted into ranks within each 

sample. Our system uses the rank of expression value for the 

corresponding gene within each sample, sorts the rank levels 

from the smallest to the largest for each gene along with the 

class label of each sample which is 0 for normal 1 for tumor, 

calculates the score which is the number of swaps between 

neighboring 0 and 1. Table 1 shows an algorithm for identifying 

informative genes. To help understand the algorithm, let us 

assume that there is a microarray data as in Table 2 below. 

Change the data based on the rank within each sample and it 

becomes Table 3; sort the rank levels from the smallest to the 

largest for each gene along with the class label of each sample 

and it becomes Table 4; and change the class label of a sample 

into binary sequence, and it becomes Table 5. 

 
TABLE 1. INFORMATIVE GENE IDENTIFICATION ALGORITHM 

Input:  NI (the number of informative genes), V[][] 

(expression values)  

Output:  IG[][] (Informative genes) 

1: Generate a binary sequence S, which replaces normal 

samples with 0 and tumor samples with 1. 

2: For all i, j, replace V[Gi][Sj] which represents an 

expression value, with R[Gi][Sj], which represents the 

order when they are ranked according to expression 

values within each sample. 

3: Select an arbitrary gene Gi among genes that were not 

selected, 

4: For all j, sort R[Gi][Sj] in ascending order, and 

generate a binary sequence T where normal samples 

are replaced with 0 and tumor samples are replaced 

with 1. 

5: Using the scoring function, defined as the number of 

swaps, calculate the scores for S and T, and insert the 

score for T into a priority queue with size NI. 

6: Repeat step 3 until there are no unselected genes left. 

7: From the priority queue, select half of NI number of 

informative genes from top(front), and half of NI 

number of informative genes from bottom(rear). 

 

 

 

TABLE 2. DATA EXPRESSED IN EXPRESSION VALUES 

 Normal Normal Normal Tumor Tumor Tumor 

G1 13 32 3 24 13 42 

G2 25 12 26 3 1 2 

G3 23 6 2 102 59 13 

G4 7 20 63 4 7 27 

TABLE 3. DATA EXPRESSED IN RANK 

 Normal Normal Normal Tumor Tumor Tumor 

G1 2 4 2 3 3 4 

G2 4 2 3 1 1 1 

G3 3 1 1 4 4 2 

G4 1 3 4 2 2 3 
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TABLE 4. AFTER SORTING 

 N or T N or T N or T N or T N or T N or T 

G1 2 (N) 2 (N) 3 (T) 3 (T) 4 (N) 4 (T) 

G2 1 (T) 1 (T) 1 (T) 2 (N) 3 (N) 4 (N) 

G3 1 (N) 1 (N) 2 (T) 3 (N) 4 (T) 4 (T) 

G4 1 (N) 2 (T) 2 (T) 3 (N) 3 (T) 4 (T) 

 
TABLE 5. DATA EXPRESSED AS BINARY SEQUENCE 

G1 0 0 1 1 0 1 

G2 1 1 1 0 0 0 

G3 0 0 1 0 1 1 

G4 0 1 1 0 1 1 

 

After carrying out the step 1 in Table 1, the initial binary 

sequence S becomes as “000111” which is a perfect splitting. 

When we run the function which calculates the score as the 

number of swaps of consecutive 0s and 1s to arrive at S (perfect 

splitting) for each gene in Table 5, the gene with the smallest 

score is proven to be G3 with a total of 1 time, and the gene with 

the largest score is proven to be G2 with 9 times. This means 

that G2 and G3 have a strong possibility of becoming 

informative genes than G1 or G4. 

B. k-TST (Top Scoring Triple) Classification Method 

In this paper we are making an attempt to generalize the 

number of genes involved in the rule in order to increase the 

reliability of classifier for tumor and normal sample prediction. 

As the first step of this attempt, we are proposing the k-TST.  

In k-TST, the number of genes involved in a classification 

rule is limited to three. For each set of three genes, we establish 

six magnitude relationships like R1, R2, R3, R4, R5, R6  in the 

Table 7. For each relationship we calculate the score which is 

the difference between the probability that the relationship 

occurs in class 1 and the probability that the relationship occurs 

in class 2. The set of three genes satisfying the relationship with 

high score is regarded as most discriminative for classification. 

Each relationship also keeps its class label by comparing the 

two probabilities and adopting the class having the prevalent 

probability. We calculate the scores for all the sets of three 

genes and for all six magnitude relationships for each set, put 

the scores into a priority queue in descending order. We use the 

k top-scoring relationships. Our classifier consists of k 

classification rules and each classification rule consists of (1) a 

set of three genes, (2) the magnitude relationship among those 

three genes, and (3) the class label of the relationship. The 

algorithm regarding k-TST is in the Table 6. In addition, the 

scoring function used in step 3 of Table 6 is presented as 

follows. 

 

Pijk(1) 

The probability that a relationship of Xi< Xj <Xk 

occurs in class 1 

(Xi, Xj, Xk stand for the ranks values within a sample)

∆ijk | Pijk(1) - Pijk(2) | 

 

 

TABLE 7. K-TST EXAMPLE 

 R1 R2 R3 R4 R5 R6 Total 

C1 2 1 29 4 2 4 42 

C2 4 5 1 14 8 1 33 

(Definition of R)   R1: Xi < Xj < Xk ,  R2: Xi < Xk < Xj ,   

R3: Xj < Xi < Xk ,    R4: Xj < Xk < Xi ,  

R5: Xk < Xi < Xj ,   R6: Xk < Xj < Xi  

 

For example, let us assume that there is a dataset like Table 7. 

Here, when all the corresponding values of ∆ are calculated, in 

the case of R3 (Xj < Xi < Xk) relationship, one can see that  

 

∆jik = | Pjik(1) - Pjik(2) | = | 29/42 – 1/33 | ≈ 0.66 

 

has the largest score. This means that given a test sample if one 

observes the R3 relationship, then the class of the sample is 

predicted as C1. Actually we apply k number of classification 

rules to the test sample, and do majority voting to predict the 

class of the sample. Majority voting process is as follows. 
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TABLE 6. K-TST CLASSIFICATION ALGORITHM 

Input: 
K (the number of rules specified), IS[][] 

(informative genes) 

Output: A set of K number of classification rules 

1: From the informative gene set, select a set of three 

genes that were not processed before. 

2: Determine the magnitude relationships among the 

three genes for all samples. 

3:  Calculate the score for each three gene 

combination using the scoring function. 

4: Insert the rule which is composed of the calculated 

score, the gene combination, the magnitude 

relationship, and the class label of this gene 

combination into the priority queue with size K. 

5: Repeat the step 1 if there are three gene 

combinations that are not processed 

6: Select top K rules from the priority queue, 
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If the value of NC is larger than k/2, S is predicted as normal 

sample, otherwise tumor sample. Since we fixed the number of 

rules to be an odd number, our system can break the tie and 

always returns a predicted class label. 

V. EXPERIMENTAL RESULTS 

In this section, we describe the experiments on the two-stage 

method in order to verify its accuracy and efficiency. We used 

prostate cancer microarray data which are publicly available. 

The platform of these data is Affymatrix HG_95AV2. Each data 

will be represented as an abbreviation of the first author of the 

paper, like as Singh [16], Welsh [20] and LaTulippe [11]. Table 

8 shows the information about the microarray datasets used in 

our experiment. 

 
TABLE 8. PROSTATE MICROARRAY DATA 

Data 
Number of 

Probes 

Number of 

Normal 

Samples 

Number of 

Tumor 

Samples 

Total 

Number of 

Samples 

Singh 12600 50 52 102 

Welsh 12626 9 24 33 

LaTulippe 12626 3 23 26 

 

A. Determining The Optimal Number Of Rules (k) By 

LOOCV 

In this subsection, we describe the experiment that 

determines the optimal number of rules (k) by LOOCV. We 

varied the value of k, and choose the k which gave the highest 

LOOCV accuracy in each dataset. Since most of the previous 

gene ranking methods typically select 50-200 top-ranked genes 

[8][12], we fixed the number of informative genes on 126, 1 % 

of 12600 genes which is the number of common probe set in the 

microarray data. We imposed a restriction on LOOCV 

experiments that k does not exceed 10 and is an odd number in 

order to break ties in the majority voting procedure. Table 9 

shows the summary of the optimal k obtained from the 

experiments in each training dataset. We measured accuracy, 

sensitivity and specificity in order to compare our system’s 

performance with others’. They are defined as follows. 

SamplesTotalofNumberThe

SamplesredictedPCorrectlyofNumberThe
Accuracy =  

SamplesTumorofNumberThe

SamplesTumorredictedPCorrectlyofNumberThe
ySensitivit =  

SamplesNormalofNumberThe

SamplesNormalredictedPCorrectlyofNumberThe
ySpecificit =  

 

TABLE 9  THE VALUES OF OPTIMAL K 

Training Dataset Optimal k 

Singh 9 

LaTulippe 5 

Welsh 5 

Singh + Welsh 9 

Singh + LaTulippe 7 

Welsh + LaTulippe 5 

In this experiment, the number of rules was restricted to be no 

less than 5. If the number of rules is too small, the rules can not 

guarantee the credibility as a classifier. Moreover, there is a 

possibility that the independent test data might not contain the 

genes involved in the classifier. 

B. Accuracy of Informative Gene Identification Method 

In this subsection, we describe the accuracy test of the 

proposed informative gene identification method. It was 

compared with Information Gain and Relief-F, which are 

popular feature filtering methods. Since these two methods 

cannot be applied to the integrated data directly, we transformed 

all the data into the normalized form by applying Z-score, which 

is a classic but most general normalization method. After 

selecting the informative genes using our proposed method, 

Information Gain, and Relief-F individually, we compared the 

LOOCV accuracy of those three gene identification methods. 

For classification method, we used linear support vector 

machine (SVM). The classification results of SVM are used to 

evaluate the effectiveness of our proposed informative gene 

identification method. Fig. 8 through Fig. 13 show LOOCV 

accuracy in each dataset. 
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Fig. 8. Accuracy, Sensitivity and Specificity of Singh’s LOOCV 
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Fig. 9. Accuracy, Sensitivity and Specificity of Welsh’s LOOCV 
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Fig. 10. Accuracy, Sensitivity and Specificity of LaTulippe’s LOOCV 
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Fig. 11. Accuracy, Sensitivity and Specificity of Singh+Welsh’s LOOCV 
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Fig. 12. Accuracy, Sensitivity and Specificity of Singh+LaTulippe’s 

LOOCV 
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Fig. 13. Accuracy, Sensitivity and Specificity of Welsh+LaTulippe’s 

LOOCV 

 

As one can perceive from the above graphs, the proposed 

informative gene identification method shows a comparable or 

better performance than others. Considering LOOCV accuracy 

on Singh, and Welsh individually, our method shows 

comparable performance to Information Gain (Fig. 8, Fig. 9). 

Considering LOOCV accuracy on LaTulippe, our method 

shows better result. One can see our method always reveals 

better performance than Relief-F. Especially, when we applied 

LOOCV to the integrated data of Singh + LaTulippe, better 

accuracy was obtained by more than 10%. Based on these 

results, our informative gene identification method offered 

better (or the same) LOOCV accuracy compared to others.  

In Fig. 14 through Fig. 16, the accuracy of independent 

dataset was presented for Singh, Welsh, and LaTulippe 

individually. In the case of using Singh as independent test data, 

training datasets are Welsh, LaTulippe, and Welsh+LaTulippe. 

We built a classifier from each training dataset, applied the 

classifier to Singh, and measured the accuracy. The 

experimental results of accuracy for Singh were compared 

among different training datasets. We also compared the 

experimental results of accuracy for Singh among three 

different methods themselves which are 1) our gene 

identification method + SVM, 2) Relief-F + SVM, and 3) 

Information Gain + SVM. 
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Fig. 14. Accuracy of Singh as test data 
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Fig. 15. Accuracy of Welsh as test data 
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Fig. 16. Accuracy of LaTulippe as test data 

 

The classification accuracy on independent test data also 

confirmed that the proposed informative gene identification 

method shows comparable or better performance than 

Information Gain and Information Gain. In addition, the 

classification accuracy of our method is getting higher as the 

sample size in the training datasets is larger by data integration. 

C. Accuracy of Classification Method 

In this section, we tested the accuracy of our classification 

method (k-TST) using optimal k acquired from subsection A.. 

We compared our system with SVM after applying Information 

Gain, which showed a better accuracy than Relief-F and k-TSP.  

As shown in Fig. 17 through Fig. 19, we built a classifier 

using training dataset which are all possible combinations of 

dataset excluding the test dataset, and measured the accuracy of 

each independent test data. Table 10 shows the values of 

optimal k used in our experiments. 

Test with Singh

30

40

50

60

70

80

90

Welsh Latulippe Welsh + Latulippe

Training Data

A
cc
u
r
a
cy

k-TST

k-TSP

Information Gain + SVM

 
Fig. 17. Accuracy of Singh as test data 
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Fig. 18. Accuracy of Welsh as test data 
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Fig. 19. Accuracy of LaTulippe as test data 

 

As one can see from the above figures, the experimental 

results of our system did not always show the better 

performance than other systems when the training dataset is a 

single microarray dataset. However, it is partly due to the small 

sample size of single microarray dataset. Especially, both Welsh 

and LaTulippe consisted of much skewed samples where the 

number of normal samples is far smaller than that of tumor 

samples. Therefore, they cannot be used as training data by 

itself. However, as integration significantly increases the sample 

size, our system performs much better in accuracy than k-TSP 

and SVM. Based on these experiments, the proposed two-stage 

approach can make more credible classifiers than other systems, 

especially when data are comprehensively integrated. 

TABLE 10.  THE VALUES OF OPTIMAL K USED IN OUR EXPERIMENTS 

Test data Training data k-TSP k-TST 

Welsh 3 5 

LaTulippe 3 5 Singh 

Welsh + LaTulippe 1 5 

Singh 1 9 

LaTulippe 3 5 Welsh 

Singh + LaTulippe 5 7 

Singh 1 9 

Welsh 3 5 LaTulippe 

Singh + Welsh 9 9 
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VI. CONCLUSION 

The main contribution of this paper is to introduce a novel 

two-stage approach which sequentially combines integrating 

independent microarray datasets and selecting informative 

genes, and builds a classifier. With an abundant supply of 

publicly available microarray data, a new method which 

integrates independently-generated microarray data with the 

same experimental objectives was employed in the first stage of 

selecting informative genes. Increasing sample size by 

integrating the independent microarray data has lead to the 

discovery of more reliable classifier. Moreover, two-stage 

approach makes the computation time of the second stage 

tremendously lessen because only the pre-selected informative 

genes were considered. Since the number of genes involved in 

our classifier is relatively small, they could be very 

cost-effective in a clinical setting where microarrays with 

thousands of genes are impractical. A prototype was 

implemented and tested on integrated prostate microarray 

datasets. Experiments show that our method of informative gene 

selection is better than or comparable to other methods. Being 

compared with Information Gain plus SVM, our system also 

shows better classification accuracy on independent test data as 

the sample size is getting larger by integration. We haven’t 

tested the multi-class classification yet. Currently the classifier 

of this system can be extended to multi-class classification using 

pair-wise ensemble without problems. For identification of 

informative genes in multi-class environment, we can still build 

a perfectly split sequence, and calculate the score to reach the 

sequence. However this needs some careful considerations if 

there are some correlations among classes. Also we are 

currently investigating (1) cross platform validation where 

cDNA data is included in the integrated microarray data, (2) 

elimination of redundancy among informative genes and (3) 

generalization of the number of rules and the number of genes 

involved in a rule in our classifier.  
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