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a b s t r a c t

Biclusters are subsets of genes that exhibit similar behavior over a set of conditions. A
biclustering algorithm is a useful tool for uncovering groups of genes involved in the same
cellular processes and groups of conditions under which these processes take place. In this
paper, we propose a polynomial time algorithm to identify functionally highly correlated
biclusters. Our algorithm identifies (1) gene sets that simultaneously exhibit additive, mul-
tiplicative, and combined patterns and allow high levels of noise, (2) multiple, possibly
overlapped, and diverse gene sets, (3) biclusters that simultaneously exhibit negatively
and positively correlated gene sets, and (4) gene sets for which the functional association
is very high. We validate the level of functional association in our method by using the GO
database, protein–protein interactions and KEGG pathways.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Finding sets of co-regulated genes can lead to identification of their functionality and eventually the genetic pathways
involved. Clustering co-regulated genes from a microarray dataset is performed by examining the expression values of
the genes under various conditions. Each condition, also called a sample, denotes the state to which the gene was exposed
(e.g., temperature) or the stage of an arbitrary cellular processes. Note that not all samples are observed in a particular cel-
lular process, nor do all genes in a microarray dataset participate in it. We can expect subsets of genes to be co-regulated
under certain experimental conditions, but to behave almost independently under other conditions [7]. The data mining
technique used to find a submatrix of a functionally coherent gene and sample set in a microarray is known as biclustering,
as presented by Cheng and Church [9]. A set of genes in a bicluster exhibits several patterns of expression values. The data
matrix in Fig. 1(a) exhibits no obvious pattern when plotted in Fig. 1(b). Biclusters that exhibit various patterns can be iden-
tified from the data matrix with various biclustering algorithms, as indicated in Fig. 1(c)–(e).

Many biclustering algorithms have been introduced [17], and most variants of the biclustering problem have been shown
to be NP-hard [9], so all of these algorithms use heuristic methods or probabilistic approximations. Accordingly, these algo-
rithms have various strengths and weaknesses and each identifies different patterns. Biclustering algorithms can be gener-
ally divided into two groups according to the type of patterns:
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1.1. Algorithms that find additive or multiplicative patterns

The d-bicluster [9] is a submatrix for which MSR (mean squared residue) is small. When a high degree of noise is allowed
in a d-biclustering, it means that the d-bicluster has a large MSR. However, a large MSR in this case leads to non-additive or
non-multiplicative patterns. The d-biclusters that have additive or multiplicative patterns should have small MSRs, therefore
d-biclustering cannot allow a high degree of noise. Moreover, d-biclustering can easily miss overlapping clusters due to ran-
dom value substitutions once a bicluster is identified. This is another weakness of d-biclustering.

The p-Cluster [22] first scans the dataset to find all column-pair and row-pair maximal clusters called MDS (Maximum
Dimension Set). Then it performs sequential pruning in turn using the row-pair MDS and the column-pair MDS. It then mines
the final clusters based on a prefix tree. However, p-Cluster is not robust to noise either, because the number of clusters from
the prefix tree is exponential to the allowed degree of noise and the size of the prefix. Those limitations make p-Cluster
unpractical.

The Tri-Cluster [24] is the first algorithm that mines a 3 dimensional microarray dataset. It makes a DFS (Depth First
Search) tree for which the nodes are genes which show the same range of fluctuation within a user specified threshold e.
If e is too big, the DFS tree could grow too deep to complete the mining. However, Tri-Cluster with small e does not allow
a high degree of noise. Moreover, the time complexity is exponential to the number of samples, which makes Tri-Cluster dif-
ficult to use.

The reg-Cluster [23] mines additive and multiplicative co-regulation patterns by first defining dij as the difference in the
gene expression values between conditions ci and cj and then finding the gene set for which the ratio of d01 to dij is within e.
Although the idea of mining additive and multiplicative patterns together is novel, there are also several problems with this.
First, finding a proper e is a very difficult task. If e is too big, the gene set in a bicluster will have many false positive genes,
while if e is too small, the gene set will have many false negatives. Also, reg-Cluster constructs a DFS tree, in the same manner
as Tri-Cluster, which leads to the same problems mentioned above.

Fig. 1. Gene expression patterns of a bicluster. (a) is microarray data of which cells represent gene expression values. (b) represents a plotted version of (a).
(c), (d), and (e) display biclusters identified from microarray data (a).
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The BiMine [5] mines sub-matrices for which the evaluation function called ASR (Average Correlation Value) is above a
threshold. It constructs a DFS tree for which the node represents a submatrix. There are more genes in the submatrix and
fewer samples which satisfy the biclustering condition as the tree grows. In principle, the time complexity of BiMine is expo-
nential to the number of genes. However, its pruning method alleviates the computational cost. Moreover, it shows good GO
(Gene Ontology) [4] validation results by adopting an appropriate evaluation function.

The number of nodes in a DFS tree grows exponentially as the level increases, which means that algorithms that construct
DFS trees have a common problem: there are too many slightly differing biclusters. However, examining all those biclusters
is not practical and, in most cases, we do not even know which particular bicluster effectively represents those similar
biclusters.

Unlike the algorithms that construct a DFS tree, RWB [2] and PSObiclustering [18] use local optimization techniques to
find submatrices that minimize MSR which is the same measure used in Cheng and Church [9]. PSObiclustering uses the par-
ticle swarm optimization technique, which is a population based evolutionary computation method. RWB uses a greedy
technique enriched with a local search strategy to escape poor local minima. They showed that effective search was possible
by adopting heuristic search methods.

Finally, a problem common to most of the previous algorithms is that a low level of noise is allowed, which makes it dif-
ficult to find all of the meaningful patterns. Thus, the available algorithms commonly find only strictly additive or multipli-
cative patterns.

1.2. Algorithms that find patterns by keeping an ordered sequence

The OPSM (Order Preserving Sub-Matrix) [7] defines a cluster as a submatrix of an original microarray matrix after
performing column permutations separately for each row for which the gene expression values are arranged in a non-
decreasing pattern (Fig. 1(e)). There are several different algorithms, such as OP-Cluster (Order Preserving Cluster) [16]
and KiWi [10], which use the same basic definition of OPSM. Although OPSM shows good GO validation results [17], it
can find only one bicluster at a time. Furthermore, OPSM-based algorithms can miss biologically significant patterns if they
do not preserve the order [25].

Recently, a few algorithms that do not belong to the above categories have been developed [3,14]. The algorithms
described above are summarized in Table 1.

In this paper, we propose a new model to identify biclusters with functionally highly correlated gene sets called RN
(robust to noise)-cluster. The features of RN-Cluster are as follows: (1) RN-Cluster identifies gene sets that simultaneously
exhibit additive, multiplicative, and combined patterns within user specified thresholds. This combination allows highly
flexible patterns with specified levels of noise tolerance. Additionally, allowing a high level of noise does not require expo-
nential time or space complexity in RN-Cluster, which means that RN-Cluster is robust to experimental noise. (2) RN-Cluster
identifies multiple, possibly overlapping gene sets while guaranteeing gene-diversity in a bicluster by complying with a user
specified similarity threshold. (3) RN-Cluster simultaneously identifies biclusters with negatively and positively correlated
gene sets. (4) RN-Cluster identifies biclusters for which the functional association is very high, where the functional associ-
ation is validated using the GO database, protein–protein interactions and KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways [15].

2. Preliminaries

Before detailing the algorithm, we define our notation and introduce some preliminary concepts.

Table 1
Summary of biclustering algorithms.

Algorithm Features Pros Cons

d-bicluster Additive or Multiplicative patterns Define Bicluster for the first time Do not allow overlapping
biclusters

p-Cluster Additive or Multiplicative patterns Generalize the subspace clustering Exponential time complexity
due to DFS tree

Tri-Cluster Additive or Multiplicative patterns Applicable to 3-D microarray including time axis Exponential time complexity
due to DFS tree

BiMine Additive or Multiplicative patterns Biologically sound evaluation function for
biclusters

Exponential time complexity
due to DFS tree

reg-Cluster Additive and Multiplicative
patterns

Biologically sound evaluation function for
biclusters

Exponential time complexity
due to DFS tree

RWB, PSObiclustering Additive or Multiplicative patterns Adopting heuristic search algorithms Do not give global solutions
OPSM, OP-Cluster,

KiWi
Order preserving patterns Biologically meaningful results Can miss significant patterns
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2.1. Notations

G whole gene set in microarray. There are m genes
S whole sample set in microarray. There are n samples
(O, T) a submatrix of a microarray, where O # G, T # S
g0,g1, . . . genes in O
s0,s1, . . . samples in T
cij expression value of gene gi on sample sj

dk
ab ckb�cka, difference of expression values of sample sa and sample sb on gene gk

ti
cd di

pð0Þpð1Þ=di
cd, ratio of gene gi, where sp(0) and sp(1) are the first and second samples in RN-Cluster, respectively

d user-specified maximum ratio threshold ( > 1)
mg user-specified minimum # of genes of an RN-Cluster
ms user-specified minimum # of samples of an RN-Cluster
rt user-specified similarity threshold of two RN-Clusters
qnum user-specified # of priority queues to keep RN-Clusters
qsize user-specified size of each priority queue

2.2. Preliminary concepts

Let O = {g0,g1, . . . ,gm�1} and T = {s0,s1, . . . ,sn�1}. Let cij be the expression level of gene gi in sample sj. Let C be an m * n
submatrix (O,T) of the dataset (G,S). We can write C = (O,T) = {cij}, i 2 [0,m � 1] and j 2 [0,n-1].

Definition 1 (RN-Cluster). Let C = (O,T) be a submatrix, where gh, gi, gj, gk 2 O and T = {. . .,sa,sb, . . . ,sc,sd, . . .}. C is an RN-cluster
iff C satisfies the following properties:

1. di
ab – 0; dj

ab – 0; di
cd – 0 and dj

cd – 0

2. sign ti
cd

� �
¼ sign tj

cd

� �
, where sign (x) returns �1 if x is negative and +1 if x is positive

3. jOjP mg P 2 and jTjP ms P 3

4. tj
cd

��� ���=d 6 ti
cd

�� �� 6 tk
cd

�� �� � d, where tj
cd

��� ��� and tk
cd

�� �� are maximum and minimum th
cd

�� �� values, respectively for all gh 2 O

The first property of Definition 1 implies that RN-Cluster does not contain genes for which the expression values are con-
stant over a sample pair. Genes that have constant expression values over a set of samples do not exhibit any relationship.
The second property implies that genes for which the t values have the same sign can be clustered together. There are 4 cases
of tendency changes in each gene: (up, up), (up, down), (down, up) and (down, down), and the sign of each case is plus,
minus, minus and plus, respectively. Genes for which the tendency is (up, up) and (down, down) can be clustered together,
and (up, down) and (down, up) can be clustered together. Note that two genes for which the tendencies are (up, up) and
(down, down) respectively can be said to be negatively co-regulated, as well as the case of (up, down) and (down, up).

The third property requires that RN-Cluster has more than mg genes and ms samples. In addition, RN-Cluster should have
at least 2 genes and 3 samples. The fourth property ensures that the ratios of gene gi, in a cluster are similar. So, the ratios are
within a range of tj

cd

��� ���=d and tk
cd

�� �� � d where d is a user-specified maximum ratio threshold.

Definition 2 (p-RNC). When RN-Cluster C = (O,T) and jTj = p, we call C p-RNC, where p is number of samples involved in the
bicluster. For example, if the number of samples jTj = 4, then C is 4-RNC. By the constraint that jTjP 3 in Definition 1, there is
no 1-RNC or 2-RNC. However, exceptionally, we define 2-RNC which does not exhibit the properties of Definition 1. The
2-RNC is an m � 2 submatrix of (G,S), where m is the number of genes in G as described.

Suppose there is a gene expression matrix with 10 genes and 6 samples, (G,S) as shown in Table 2. Let 2-RNC be the
G � {s0,s2} submatrix, ms = 3, mg = 3, and d = 2. If we examine sample s3, then T = {s0,s2,s3}. The dk

02 and dk
23 for gene gk are

shown in Table 3. We can see that bicluster B1 with gene set O = {g0,g2,g4} and sample set T = {s0,s2,s3} satisfies all the
properties:

(1) dk
02 and dk

23 for k = 0, 2, 4 are not zero, (2) dk
02 and dk

23 for k = 0, 2, 4 have the same sign, (3) jOj = 3 P 3 and jTj = 3 P 3,
and (4) the values max tk

23

�� ��� �
¼ 9:14 when k = 4, min tk

23

�� ��� �
¼ 7:75 when k = 2 and tk

23

�� �� ¼ 8 when k = 0, thus 9.14/
2(=4.58) < 8 < 7.75 * 2(=15.5). Because all the properties are satisfied, B1 is a 3-RNC, and can be represented by the
graph shown in Fig. 2a. Similarly, we can see that bicluster B2 with gene set O = {g3,g7,g9} and sample set
T = {s0,s2,s3} satisfies all of the above properties, and so B2 is also a 3-RNC. B2 is shown in Fig. 2-b. Bicluster B3 with
gene set O = {g5,g6,g8}, shown in Fig. 2-c, is a 3-RNC as well. Genes of the biclusters in Fig. 2 show co-regulation or
negative co-regulation on the set of conditions s0, s2 and s3.
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Definition 3 (The similarity between two p-RNCs or two gene sets). Consider two p-RNCs C1 = (O1,T1) and C2 = (O2,T2). When
gene set O = O1 \ O2, the similarity between C1 and C2 or the similarity between O1 and O2 is defined as max (jOj/jO1j, jOj/ jO2j),
where max (a,b) returns a when a P b. We can say that two p-RNCs or two gene sets are similar if max (jOj/jO1j, jOj/jO2j) P rt.

Since we are interested in the diversity among gene sets rather than sample sets, we measure the similarity between the
gene sets of two p-RNCs. For example, when p-RNC C1 has O1 = {g0,g2,g3,g5} and C2 has O2 = {g1,g2,g3,g4,g6}, the similarity
between C1 and C2 or the similarity between O1and O2 is 0.5.

3. Algorithm

The RN-Cluster mines a set of genes that behave similarly on a set of samples. The RN-Cluster has two main steps: (1)
obtain the initial 2-RNC set for which the samples are all possible sample pairs, and (2) for each p-RNC, find (p + 1)-RNC.
We describe the details of each step.

3.1. Initial 2-RNC set

The set of two samples {(si,sj)}, where i < j and the set of genes is {g0,g1, . . . ,gm�1}, forms a 2-RNC. The number of 2-RNCs is
n(n-1)/2, which counts all possible sample pairs.

For example, in Table 2, the possible sample sets of a 2-RNC are {s0,s1}, {s0,s2}, . . . , {s4,s5}. Note that if ms = 3, then {s0,s5},
{s1,s5}, {s2,s5}, {s3,s5} and {s4,s5} cannot form a 2-RNC because they cannot grow to a 3 or higher-RNC (e.g., G � {s0,s5,s6}).
Similarly, {s0,s4}, {s1,s4}, {s2,s4} and {s3,s4} cannot form a 2-RNC if ms = 4.

Table 2
10 � 6 microarray dataset.

genensample s0 s1 s2 s3 s4 s5

YAL003W (g0) 0.15 �0.07 �0.25 �0.3 �1.12 �0.67
YAL012W (g1) 0.21 0.03 0.18 �0.27 �0.32 0.62
YAL014C (g2) �0.03 �0.07 0.28 0.32 �0.27 �0.36
YAL015C (g3) �0.25 0.58 0.77 0.28 0.32 0.65
YAL016W (g4) 0.11 0.04 0.75 0.82 0.21 �0.2
YAL017W (g5) 0.24 0.31 0.95 0.12 0.18 0.69
YAL021C (g6) �0.3 0.22 0.02 �0.64 0.06 �0.04
YAL022C (g7) �0.15 �0.25 0.18 0.06 �0.15 �0.17
YAL029C (g8) 0 �0.74 �0.38 0.87 �0.34 0.12
YAL030W (g9) �0.15 0.2 0.31 0.15 0.04 �0.22

Table 3
Difference values and ratio of difference values for gene set O.

g0 g1 g2 g3 g4 g5 g6 g7 g8 g9

dk
02

�0.4 �0.03 0.31 1.02 0.64 0.71 0.32 0.33 �0.38 0.46

dk
23

�0.05 �0.45 0.04 �0.49 0.07 �0.83 �0.66 �0.12 1.25 �0.16

tk
23

�� �� 8 0.067 7.75 2.08 9.14 0.86 0.48 2.75 0.30 2.88

Fig. 2. Example of RN-Clusters.
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3.2. Obtaining (p + 1)-RNCs from p-RNCs

For all 2-RNCs C = (O,T), we make a 3-RNC by examining the sample si such that last < i, where slast is the last sample in the
sample set T. We can obtain 4-RNCs from 3-RNCs, 5-RNCs from 4-RNCs, etc. In other words, we perform a breadth first search
to obtain the (p + 1)-RNCs from p-RNCs. This process is illustrated in Fig. 3, where each node stands for a p-RNC or (p + 1)-
RNC, and the name of the node stands for the sample to be examined from its ancestor (p � 1)-RNC or p-RNC.

The entire algorithm is shown in Fig. A.1 in Appendix A. The examination process is composed of three parts: clustering,
queuing, and eliminating duplicate biclusters. Details of each are described in the following subsections.

3.3. Clustering

The examination process first calculates tk
li between slast and si for all the genes gk, where si is the sample we are examining

and slast is the last sample in the sample set T. Then, genes are clustered into two sets according to the sign of tk
li: a set of

positive values, OP, and a set of negative values, ON. If the sign of tk
li is positive, gk is included in OP; otherwise, gk is included

in ON.
Keeping tk

li with the same sign in separate sets allows negatively correlated genes to be included in a bicluster.
The first table of Fig. 4 shows genes in OP and their tk

li values. First, OP is sorted according to the tk
li values in ascending

order, and then we put each gk into a bin according to the tk
li values, as shown in the second table of Fig. 4. We can see that

16 bins (bini � bini+15) have gk for which the tk
li values are in the range of t0

li � di=8 and t0
li � dðiþ16Þ=8. This means that the max-

imal tk
li cannot exceed the minimal tk

li

� �
� d2. Note that the number of bins was empirically set as 16, because we observed

that using a finer (32,64 or 128 bins) or coarser (4 or 8 bins) grain does not increase the number of resulting RN-Clusters,
nor does it improve the quality of the RN-Clusters.

Let nj be the number of the gk in each of the 16 bins and let those 16 bins be labeled as Bj. For example, B0 is the first
16 bins (bin0 � bin15) and has n0 number of gk for which the tk

li values are in the range of t0
li � d0 and t0

li � d2. When we obtain
the (Bj,nj) pairs, we do not need to keep the (Bj,nj) pair for which nj < mg, the minimum number of genes. We sort (Bj,nj) pairs
according to nj in descending order. The first Bj would have maximal nj, and the gene set for the first Bj forms the gene set for
the new (p + 1)-RNC for which the new sample set, T is T U {si}.

Next, we obtain another gene set by searching the next Bj in the sorted (Bj,nj) pairs. Let the gene set of the Bj currently
being searched be G and the gene sets that have already been formed into (p + 1)-RNC be GSet. G can be formed into a
(p + 1)-RNC if the similarity as given by Definition 3 between G and every gene set of GSet is less than rt.

In Fig. 5, the sorted (Bj,nj) pairs list is (B1,7), (B2,7), (B3,6), (B4,5), (B5,5), (B6,5), and (B7,4). Therefore, the genes of B1 form a
(p + 1)-RNC. Let rt be 0.5. The genes of B2 also form a (p + 1)-RNC, because there is no similarity with the first gene set. How-
ever, the genes of B3 do not form a (p + 1)-RNC, because 5 genes (g11,g7,g12,g6 and g0) overlap with the genes of B1, i.e., the
similarity between the gene sets of B3 and B1 is 5/6, which is greater than 0.5. Similarly, the genes in B4 can form a (p + 1)-
RNC. We can apply the same process to ON.

When generating (p + 1)-RNCs, if we cannot obtain any (p + 1)-RNCs from the OPs or ONs for all p-RNCs and all samples si

where si 2 S – T, then there are no valid (p + 1)-RNCs, and the entire process ends.

3.4. Queuing

Let the number of (p � 1)-RNCs be r. For each (p � 1)-RNC, there are at most n samples to examine, and for each exam-
ination, at most (m/mg) p-RNCs are generated, where m is the number of genes in a microarray, and mg is the user-specified
minimum number of genes in an RN-Cluster. Thus there are O(mnr) p-RNCs. We cannot keep all these p-RNCs due to memory
limitations, and examining all of them is extremely time consuming. However, we observe that 1) we are only interested in
distinguishing p-RNCs with bigger gene sets than the others, and 2) we only need to keep the p-RNCs which have a higher
probability of growing to a p’-RNC, where p0 > p.

To satisfy observation 1), we use a set of priority queues for which the priority measure is the size of the gene set, jOj, to
keep the p-RNCs. The p-RNCs in these queues form the output biclusters. Fig. 6 compares two queuing strategies: a single
priority queue and multiple priority queues. Our method uses latter strategy. Each node in the BFS tree of Fig. 6 denotes

Fig. 3. Obtaining (p + 1)-RNCs from p-RNCs.
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the name of an RNC and the size of its gene set, jOj. The single priority strategy prunes (p + 1)-RNCs from p-RNCs B and C,
meaning it does not guarantee gene variety. Thus, we keep multiple priority queues to guarantee this variety, and every
(p + 1)-RNC in each priority queue can be a result.

In order to satisfy observation 2), we need to use another set of priority queues to keep p-RNCs for (p + 1)-RNCs. The
queuing strategy is the same as above, but we heuristically set the priority measure to jOj * (n � last), where last is the index
of the last sample of T (for example, when T = {s0,s2,s3}, last is 3). The benefits of using the priority measure jOj * (n � last) are:
(1) generally, a p-RNC with a bigger gene set grows to a (p + 1)-RNC with a bigger gene set, and 2) as last increases, the prob-
ability that the p-RNC grows to a larger-RNC decreases. For example, suppose that S = {s0,s1,s2,s3,s4,s5} and there are two
3-RNCs, SB1 and SB2, for which the Ts are {s0,s1,s2} and {s0,s1,s3}, respectively. SB1 has more samples (s3,s4,s5) to examine
than SB2 (s4,s5), which means that SB1 can grow to three 4-RNCs with T = {s0,s1,s2,s3}, T = {s0,s1,s2,s4}, and T = {s0,s1,s2,s5},
while SB2 can grow to only two 4-RNCs with T = {s0,s1,s3,s4} and T = {s0,s1,s3,s5}. Furthermore, SB1 can grow to a 6-RNC with
T = {s0,s1,s2,s3,s4,s5}, while SB2 cannot. Therefore, we can say that as last increases, the probability of the p-RNC growing de-
creases. Accordingly, the priority queues have p-RNCs which are more likely to grow to larger-RNCs.

After examining all p-RNCs, we are left with two sets of (p + 1)-RNCs: one for the output, and the other for the candidates
of next (p + 1)-RNCs.

3.5. Elimination of duplicated RNCs

After obtaining two sets of priority queues, we can eliminate duplicate RNCs in order to obtain the distinguished (p + 1)-
RNCs. We can do this to candidate RNCs, result RNCs, or both. First, each set of priority queues is merged into one priority
queue, maintaining the priority measure. Then, we prepare a bit string of size jGj and set all bits to false. Let the gene set from
the (p + 1)-RNC from the merged priority queue be Gi = {gjj0 6 j < jGj}. We set the j’th bit of the bit string to true if the j’th bit
is false and Gi contains gj. We define ratio = jcount of the bit that was newly set to truej/jGij. If ratio P rt, then Gi is said to be
distinguished. Otherwise, the bit string is restored to the previous state.

There are five gene sets in Fig. 7. For G0, ratio is 1 because the bit string is initially set to false. Because ratio = 1 > rt = 0.6,
G0 is distinguished. G1 has genes g1 and g3, for which the bits are already set to true; therefore, ratio of G1 = 2/4 < rt = 0.6. Note
that for G1 in Fig. 7, only the first and sixth bits of the string are marked as true. Because G1 is not distinguished, the bit string
is restored. G2, G3 and G4 can be similarly tested, and by this means we find that G4 is not distinguished.

If gene sets are not distinguished like G1 and G4 in Fig. 7, we calculate the similarity score between each gene set and
every (p + 1)-RNC previously proven to be distinguished, according to Definition 3. If the similarity score is less then rt, then

Fig. 4. Binning process.

Fig. 5. Binning process when d = 2 and rt = 0.5.
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G can be consider to be distinguished. For example, if rt is 0.6, the gene set of every RN-Cluster is guaranteed to be over-
lapped with the gene sets of other RN-Clusters by at most 60%.

3.6. Analysis of time complexity

The time taken by the whole RN-Clustering process is same as the time for obtaining the set of p-RNCs, where 2 6 p < n.
The time cost to obtain the initial 2-RNCs is O(n2) because there are n(n � 1)/2 sample pairs. Let the time cost to obtain the
(p + 1)-RNCs from one p-RNC be tp, where p > 2. Obtaining all (p + 1)-RNCs from all p-RNCs takes tp * qsize * qnum, where
qsize * qnum is the number of all p-RNCs that are in the priority queue. For each p-RNC, we examine at most n samples
and, as we have already seen, examining each sample mainly involves the clustering process. There are at most m bins,
and the most time-consuming process in clustering is sorting the bins. Therefore, clustering takes O(mlogm), and
tp = O(nmlogm).

Since obtaining all (p + 1)-RNCs from all p-RNCs occurs at most n times and qsize and qnum are just user specified param-
eters, the whole RN-Clustering process takes approximately O(n2mlogm). Note that the time taken to cluster 2-RNCs is ig-
nored because it is relatively small compared with the time taken by the whole RN-Clustering process.

4. Experimental results

As experimental environments, we used a Windows XP operating system on an AMD Athlon 64 X2 Dual, 2.81 GHz,
1.93 GB RAM machine. We have implemented our algorithm using the C++ language with STL (Standard Template Library).
We used both synthetic and real microarray datasets. The synthetic microarray datasets were generated by varying the size
of the samples and genes. Sub-matrices with additive and multiplicative patterns are hidden in each synthetic microarray.
We use two real microarray datasets. The Gasch et al. [11] yeast dataset consists of 2993 genes over 173 samples exposed to
various kinds of stress, and the Tavazoie et al. [20] yeast dataset consists of 2884 genes over 17 samples at two complete cell
cycles. In all experiments, we used the following parameters: ms = 4, mg = 5, d = 1.8 and rt = 0.7 unless otherwise specified.

4.1. Setting optimal parameter values

This section describes the optimization process for six user-specified parameters for RN-Cluster: d, mg, ms, rt, qnum and
qsize.

Fig. 6. Queuing strategies.

Fig. 7. Elimination of duplicated RNCs when rt = 0.6.
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Generally, parameter mg (the minimal number of genes) is initialized with a value of two. The parameter ms (the minimal
number of samples) is set to the number of samples that are involved in the same cellular function or are exposed to the
same condition. The number of samples can be easily obtained by reviewing the description of the samples of the microarray
data.

Parameter rt refers to the degree of overlap between biclusters. As rt increases, more RN-Clusters are generated, because a
larger portion of overlapping genes among RN-Clusters is allowed. The rt can be easily set by users in possession of domain
knowledge, with values ranging from 0.2 to 0.8.

As defined in Section 2, qsize is the size of each priority queue and qnum is the total number of priority queues. Let
k = qnum * qsize. Then, k is the total number of p-RNCs that exist before the duplicate RNCs are eliminated. Generally, we
can expect a larger k to lead to less pruning, thus preventing local optima. That means that a bigger k has an opportunity
to produce p-RNCs which smaller k cannot produce.

The experimental results using the Gasch yeast dataset in Table 4 reveal that qnum does not affect the number of RN-
Clusters identified if the value is bigger than 100, however a larger qsize produces more RN-Clusters. Thus, it is better to
choose a larger qsize than a larger qnum when qsize * qnum is the same, and it is appropriate to set qsize to as big as possible,
as long as qnum is greater than 100. We can set qnum as 100 and set qsize as big as the system memory permits, referring to
Fig. 8(a), which shows the memory usage as a function of qsize, using the Gasch yeast dataset.

Finally, d represents the behavior differences that genes in the same RN-Cluster can tolerate. A bigger d should be used to
obtain lenient results on microarrays with high levels of noise. Since d should be varied according to the characteristics of the
microarray, applying various d to the microarray data is required. Fig. 8-(b) shows the time costs associated with varying d in
the Gasch yeast dataset. The graph is almost in log form, which means that even though d is big enough, the time cost for
RN-Clustering won’t be increased proportionally. It is important for a biclustering algorithm to allow high levels of noise
while remaining practical, which is why we call our algorithm RN-Clustering.

4.2. Computational costs of RN-Clustering

We generated synthetic data with various sizes and checked whether RN-Cluster is practical on a large microarray data-
set. Fig. 8-(c) and (d) show the time cost as a function of the number of genes and samples, respectively. The graphs approx-
imately fit with the time complexity analyzed in the previous section. Because microarrays generally hold no more than
100,000 genes (humans have about 22,000 genes) and 200 samples, RN-Clustering is practical to use.

Secondly, we measured the time costs by varying qnum and qsize on the Gasch yeast dataset, with the results shown in
Fig. 8-(e) and (f), respectively. The graphs show linear relationships, which matches our earlier analysis of the time complex-
ity of RN-Cluster.

4.3. Functional association analysis

We validated the results through the GO (Gene Ontology) database using FuncAssociate [8]. The GO database is a collec-
tion of GO terms, which imply biological processes, cellular components and molecular functions of gene products. Genes are
functionally annotated by biological or computational experiments. Every gene belongs to at least one GO term, and a set of
genes in one GO term is said to be functionally related. As a larger portion of genes in a bicluster belong to one GO term,
genes in the bicluster can be said to be more functionally related. Because almost all the genes of yeast are functionally anno-
tated, we can map the clustered genes onto the GO database and confirm that the genes are functionally related.

We compared the GO validation results with those of OPSM [7], SAMBA [19], d-biclustering [9], and BiMine [5]. We used
the toolbox of BicAT [6] for the first three algorithms, and the executable file of BiMine which was provided by its authors.
Fig. 9 shows the proportion of biclusters significantly enriched by GO terms with significance level a = 1xe � 15 for the Gasch
yeast dataset and a = 0.0005 for the Tavazoie yeast dataset. The results indicate that almost all RN-Clusters are functionally
related.

4.4. Effects of noise in RN-Clusters

There are mainly two sources of noise in microarray data generation. One source of noise arises from preparation of the
cDNA of the microarray, and the other arises from hybridization [21]. Because the elimination of noise in microarray

Table 4
No. of RN-Clusters as a function of qsize and qnum.

qsize 10 50 100 200 500 1000

Total No. of RNCs 64 279 502 854 1700 3263
No. of 15-RNCs 6 25 48 84 185 315
qnum 10 50 100 200 500 1000
Total No. of RNCs 352 499 502 463 430 426
No. of 15-RNCs 23 43 48 52 52 21
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experiments is inevitable, robustness to noise is a very important feature of the algorithms that deals with microarray data.
We have observed that the robustness to noise of RN-Clustering is superior to those of OPSM, SAMBA, d-biclustering, and
BiMine. We used the Gasch yeast dataset and parameters ms = 15, mg = 20, d = 2.0, rt = 0.7, qsize = 100 and qnum = 20. For
the noise effect, each cij (the expression value of each gene gi on each sample sj) was transformed into ns, where ns exhibits
a normal distribution with l = cij and r = noise level. We set noise level as 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and measure the proportion
of biclusters enriched with significance level a = 1xe � 15. A noise level above 0.6 was not considered because a high level of
noise makes a microarray totally different from the original one. The results are shown in Fig. 10.

When the noise level is increased from 0 to 0.5, the proportion of biclusters is decreased from 100% to 87.32% in RN-
Clustering, while the proportion of biclusters is decreased from 64.29% to 42.62% in OPSM. The proportion of biclusters is
decreased from 85.45% to 50.90% in SAMBA. We can confirm that the decreasing rate of RN-Clustering is much slower than

Fig. 8. Time and memory cost as a function of the size of microarray and parameters qsize, qnum and d.

Fig. 9. Proportion of biclusters GO-enriched using two real yeast datasets.

444 J. Ahn et al. / Information Sciences 181 (2011) 435–449



Author's personal copy

Fig. 10. Proportion of biclusters enriched with significance level a = 1xe � 15, increasing noise level.

Fig. 11. Gene curve graphs of 61 � 16 RN-Cluster.

Table 5
k, c, p, and p-values.

k 7 8 9 10

c 809 466 586 426
p 0.0913 0.0304 0.0446 0.018
p-value 2.12e�15 1.62e�94 3.97e�85 8.51e�151
k 11 12 13 14
c 405 318 463 371
p 0.022 0.0148 0.0187 0.0136
p-value 1.66e�108 2.04e�104 3.48e�170 4.30e�152
k 15 16 17 18
c 426 333 272 158
p 0.0134 0.0092 0.0075 0.0048
p-value 2.68e�197 5.01e�173 6.74e�143 4.18e�79
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those of OPSM and SAMBA. The d-biclustering shows some fluctuations in decreasing rate, because d-biclustering replaces
the data in the submatrix of the previously found bicluster with random values, and the replacement could reduce the effect
of noise.

RN-Clustering is robust to noise because the algorithm identifies lenient additive-patterns and lenient multiplicative-
patterns in the same RN-Cluster, as shown in Fig. 11. The graph in Fig. 11 shows the gene expression values for the samples
in an RN-Cluster using the Gasch yeast dataset with 16 samples and 61 genes. We can notice the additive and multiplicative
patterns, which mean that RN-Clustering allows a high level of noise in the microarray data. We can also notice the positive
and negative correlations.

Fig. 12. Genes mapped onto KEGG pathways.
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4.5. Validation through protein pathways

In addition to validation through GO, we validated the results through protein–protein interactions, and KEGG pathways.
Although these data reveal other aspects of the underlying biological system, one can expect that genes that participate in
the same pathway respectively form a protein complex also show similar expression patterns as discussed in Prelic et al.
[17]. We show that the computed RN-Clusters reflect this correspondence.

4.5.1. Validation through protein–protein interactions
We performed experiments using a set of yeast protein–protein interactions, which are pairs of proteins that activate or

inhibit each other. Because proteins are the results of gene expression, we expect functionally related genes to form protein–
protein interactions. Using hierarchical clustering, it has been shown that there are significant relationships between pro-
tein–protein interactions and gene sets [13]. Hierarchical clustering can also be used to cluster functionally related gene sets,
but the functional significance of hierarchical clustering is very low when compared to other biclustering algorithms [17].

We use biologically validated protein–protein interactions from Gavin et al. [12]. Let c be the count of protein–protein
interactions for which two proteins are in the same p-RNC, and let p be the probability that two randomly chosen proteins
are both in the same p-RNC. We can calculate the p-value to reject the H0 that protein interactions and the set of p-RNCs are
not relevant. This is done using the following formula, based on the binomial distribution:

Pði > cÞ ¼
XI

i¼c

pið1� pÞI�i I!
I!ðI � iÞ!

� �
; p ¼ c0

100;000
;

where I is the total number of protein–protein interactions and c’ is the number of protein–protein interactions for which
the two proteins were both in the same p-RNC when they were randomly chosen 100,000 times.

The experiments were performed on a set of protein–protein interactions with socio-affinity score [12] > 5 (I = 4417). RN-
Clustering was run with the following parameters: qsize = 500, qnum = 50, and rt = 0.6. Table 5 shows the c, p, and p-values
(=P (i > c)) applied to the gene clusters of k-RNCs. Because (k + 1)-RNCs are subsets of k-RNCs, we separated the RN-Clusters
according to the number of samples. The p-values are extremely low, which means there are significant relationships be-
tween RN-Clusters and protein–protein interactions. Note that all the p-values in Table 5 were 0 when we included
protein–protein interactions with socio-affinity score < 5.

4.5.2. Validation through KEGG pathways
Analysis of the real yeast data set was carried out in order to enrich the KEGG pathways in the 16-RNC in Fig. 11. The

KEGG pathways describe the roles of genes, and provide more biologically meaningful results. We mapped the gene sets
of the 16-RNC onto the KEGG pathways using Babelomics, which is a suite of web-tools for functional annotation and anal-
ysis of groups of genes in high-throughput experiments [1]. The results are shown in Fig. 12(a) and (b). The genes found in
the 16-RNC are colored green and red. The color red represents up-regulated genes and the color green represents down-
regulated genes.

Fig. 12-(a) and (b) shows the genes (proteins) that constitute the ribosome and are involved in the RNA-polymerase pro-
cess, respectively. The p-values, which mean the significance of the gene set over the ribosome and the RNA-polymerase pro-
cess, were also calculated by Babelomics. The calculated p-values were 2.82e � 14, and 1.95e � 02 for the ribosome and the
RNA polymerase process, respectively. From these results, we can conclude that the gene sets in the RN-Cluster are function-
ally associated.

5. Conclusion

It is significant to identify the genes that are involved in the same cellular processes or functions. In this paper, we pro-
posed a novel biclustering algorithm, RN-Clustering, applied the algorithm to yeast microarray data, and acquired a large
number of gene clusters that are proven to be functionally associated by using the well-constructed Gene Ontology database.

Functional associations of RN-Clusters were also supported by yeast protein–protein interactions. This is meaningful be-
cause these protein–protein interactions construct the protein network, which shows the coordinated action of multiple
gene products. We found that the 16-RNC in Fig. 11 almost completely describes the RNA polymerase process (Fig. 12-a),
and it contains many genes which are translated into proteins that organize the ribosome in which the RNA polymerase pro-
cess takes place (Fig. 12-b). These results indicate that RN-Clustering could be further used to construct more accurate pro-
tein networks for eukaryote species in addition to yeast.

The high level of functional association of RN-Clusters arises from the features of RN-Clustering: 1) robustness to exper-
imental noise, 2) guaranteed diversity as a result of unique ranging, tree forming, and queuing algorithms.

The rapid increase in the amount of large-scale gene expression data allows us to integrate many microarray datasets and
identify biclusters. In the future, we plan to extend and apply RN-Clustering to integrated microarray datasets and to the
identification of genetic regulation of specific biological pathways under a variety of conditions.
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Appendix A

See Fig. A.1.

Fig. A.1. RN-Clustering Algorithm. Lines 2–4 describe how initial clusters (2-RNCs) are made. Each 2-RNC is composed of gene set O and sample set T
which has 2 samples. The remaining lines describe how to generate (p + 1)-RNCs from p-RNCs, starting from p = 2. Lines 7 to 30 explain the clustering and
queuing processes, which were described in sub-section C and D of Section 3. Lines 32 to 34 explain the elimination process, which was described in sub-
section E of Section 3. Lines 35 to 37 initialize the data structures for the next (p + 1)-RNCs. The realization of our algorithm is available by e-mail contact to
the corresponding author (mailto: sanghyun@cs.yonsei.ac.kr).
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