
88 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

An efficient approach for sequence
matching in large DNA databases

Jung-Im Won and Sanghyun Park

Department of Computer Science, Yonsei University, Korea

Jee-Hee Yoon

Division of Information Engineering and
Telecommunications, Hallym University, Korea

Sang-Wook Kim

College of Information and Communications, Hanyang
University, Korea

Received 14 March 2005
Revised 8 August 2005

Abstract.

In molecular biology, DNA sequence matching is one of the
most crucial operations. Since DNA databases contain a
huge volume of sequences, fast indexes are essential for
efficient processing of DNA sequence matching. In this
paper, we first point out the problems of the suffix tree, an
index structure widely-used for DNA sequence matching, in
respect of storage overhead, search performance, and
difficulty in seamless integration with DBMS. Then, we
propose a new index structure that resolves such problems.
The proposed index structure consists of two parts: the
primary part realizes the trie as binary bit-string represen-
tation without any pointers, and the secondary part helps
fast access to the trie’s leaf nodes that need to be accessed
for post-processing. We also suggest efficient algorithms
based on that index for DNA sequence matching. To verify
the superiority of the proposed approach, we conduct

performance evaluation via a series of experiments. The
results reveal that the proposed approach, which requires
smaller storage space, can be a few orders of magnitude
faster than the suffix tree.

Keywords: DNA databases; DNA sequence matching;
indexing

1. Introduction

DNA sequences hold the code that determines life
characteristics of every living organism. A DNA
sequence is represented as a string of a four-character
alphabet A, C, G, and T known as the nucleotide bases.
In molecular biology, a basic way to understand a
newly discovered DNA sequence is to infer its charac-
teristics by referring to other DNA sequences whose
characteristics have been identified [1]. DNA sequence
matching is an operation that finds DNA sequences
whose base arrangement is similar to that of a DNA
sequence given in a query from a DNA database. There-
fore, DNA sequence matching enables molecular biolo-
gists to understand the characteristics, which are the
role, evolution, and chemical structure, of the new
DNA sequence, thereby being a crucial operation in
molecular biology [2, 3].

The problem of DNA subsequence matching is for-
mulated as follows. Given a DNA database S, a query
sequence Q, and a tolerance T, it finds subsequences S�
of S whose dissimilarity with some subsequences Q� of
Q is not larger than T. A DNA database contains a huge
volume of DNA sequences. In 1992, GenBank [4],
which is a well-known DNA database, initially con-
tained around 100 million bases of 78,000 DNA
sequences. However, by 2004, it included over 44,575
million bases of 40 million DNA sequences. Histori-
cally, the database has roughly doubled in size every 14
months, and the rate of increase is also growing

Correspondence to: Jung-Im Won, Department of Computer
Science, Yonsei University, 134 Sinchon-dong, Seodaemun-gu,
Seoul 120–749, Korea. E-mail: jiwon@cs.yonsei.ac.kr

J.I. WON ET AL.

gradually. Therefore, efficient processing of DNA sub-
sequence matching is fairly important in such large
databases.

BLAST [5, 6] is a de facto standard tool widely used
by molecular biologists to perform DNA subsequence
matching. To test the homology of two DNA sequences,
it first searches for pairs of seeds, which are short
words of a fixed length obtained from the two
sequences, and then extends them to higher-scoring
regions. BLAST provides high performance by using a
heuristic algorithm. However, it does not guarantee
accuracy; i.e. it may lose some true answers. The most
popular method that guarantees accuracy is to combine
the Smith-Waterman algorithm and the sequential scan
[7]. However, it is unsuitable for wide-spread use for
practical applications since its CPU and disk access
costs are high in a large DNA database.

The size of DNA databases increases considerably so
that fast indexing is essential to support DNA subse-
quence matching efficiently. The suffix tree [8] has been
known to be a good index structure for DNA subse-
quence matching. The suffix tree is a compressed
digital trie built on all the suffixes of given sequences.
The suffix tree shows reasonable performance in
finding all the matched subsequences. Moreover, it is
ready to be applied to applications that necessitate
DNA subsequence matching since it already has
various approximate matching algorithms proposed in
the literature [9–12].

The elapsed time of subsequence matching when
using such algorithms, however, increases seriously as
a query sequence length or a tolerance increases. To
alleviate this problem, Navarro and Baeza-Yates
proposed a hybrid indexing method [13, 14], which
divides a query sequence into multiple shorter pieces,
performs their subsequence matchings with a smaller
tolerance, and then merges the results thus obtained.
Also, Meek et al. [15] suggested a method which
applies the best-first (A*) search [16] in traversing a
suffix tree. They reported that this method gives a good
performance in subsequence matching, comparable to
that of BLAST in cases where query sequences are not
too long.

The suffix tree still has the drawbacks listed below,
due to its structural features.
(1) Storage space. The suffix tree requires a large

storage space; it is often some ten times larger
than a database [13, 17, 18]. Hunt et al. [12]
reported that a suffix tree required 19G bytes
when they built it on DNA sequences of 286M
bases.

(2) Search performance. The large storage space

required by a suffix tree inversely affects the
search performance. In addition, the poor locality
of the suffix tree causes a significant loss of
efficiency in respect of disk access [18]. Thus,
overall search performance deteriorates in DNA
databases [19].

(3) Integration with DBMS. DBMS uses a page as a
unit for storing all kinds of data on disk. In
contrast, the suffix tree has difficulty in employ-
ing a page as a storage unit due to its structural
characteristics [8, 20]. Thus, the suffix tree has a
problem in integrating itself seamlessly with
DBMS.

In this paper, we propose a novel indexing method
that supports DNA subsequence matching efficiently as
well as resolving the drawbacks of the suffix tree men-
tioned above. The proposed index basically adopts a
trie [8, 21] as its primary conceptual structure and
realizes the trie by pointerless binary bit-string repre-
sentation. In addition, it employs a multi-dimensional
index as a secondary structure, which supports fast
access to the target leaf nodes when traversing the trie.
With these characteristics, the proposed index success-
fully resolves all the problems of the suffix tree in
respect of storage space, search performance, and inte-
gration with DBMS. This paper also proposes algo-
rithms that effectively process exact and approximate
DNA subsequence matchings based on the proposed
index. Through extensive experiments, we verify the
effectiveness of our approach quantitatively. The
results reveal that, compared with the previous ones,
our approach requires smaller storage space and
achieves up to some ten times better performance in
DNA subsequence matching.

The paper is organized as follows. Section 2 briefly
reviews previous research efforts related to DNA
sequence matching. Section 3 proposes a novel index
structure and discusses its characteristics. Section 4
presents query processing algorithms for exact and
approximate DNA sequence matching, which exploit
the proposed index. Section 5 shows the superiority of
our approach via performance evaluation with a series
of experiments. Finally, Section 6 summarizes and con-
cludes the paper.

2. Background

In this section, we present related work on DNA
sequence matching. Section 2.1 reviews previous
DNA subsequence matching methods by subdividing
them into two categories: sequential scan-based and

89Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

Sequence matching in large DNA databases

index-based ones. Section 2.2 introduces the suffix
tree, an index structure known to be appropriate for
subsequence matching.

2.1. Previous work

The Smith-Waterman algorithm [7] is a representative
one for DNA subsequence matching, that basically
assumes the sequential scan for accessing DNA
sequences. It uses a dynamic programming technique
and determines the optimal local alignment between
two sequences S and Q so that their similarity score
gets maximized. However, it requires a long processing
time due to its high time complexity of O(|Q|*|S|).

BLAST [5] is a heuristic algorithm that resolves the
performance problem of the Smith-Waterman algo-
rithm. It performs DNA subsequence matching via two
steps as follows [2]. In step 1, BLAST extracts all the
words of length k starting from every base position
within a query sequence Q. As a result, we have |Q| –
k + 1 words via this extraction. Next, it searches for all
the k-tuples, each of which is exactly matched to some
query word. These k-tuples thus obtained are called
seeds. In step 2, BLAST extends a query word and its
corresponding seed to find longer similar segment pairs
whose dissimilarity is not larger than a given tolerance
T. Finally, it returns subsequences similar to the query
sequence as a query result by using the similar segment
pairs.

Currently, BLAST is the most widely-used method
for DNA subsequence matching since it obtains near
optimal alignment among DNA sequences in a reason-
able time. BLAST, however, has the following
problems: its target database should be loaded into
main memory for its processing; its search perform-
ance is inversely proportional to the database size;
and its accuracy is affected by the length of a query
word.

Recently, a variety of methods have been proposed
for overcoming these problems [22, 23]. These methods
also show low search performance in huge DNA data-
bases because they basically employ the sequential
scan for accessing the database. The performance of
DNA subsequence matching can be improved by
exploiting indexing mechanisms. Previous indexing
mechanisms use the inverted index [24–26], the multi-
dimensional index [27], and the persistent tree index
[12, 15, 19].

The methods in references [24–26] employ the
inverted index, which has been frequently applied in
the area of information retrieval. They extract words,
fixed length intervals overlapped with one another,

from every sequence, and build a posting list of
<sequence number, offset> for each word. The com-
pressed inverted index [26] can reduce the index size;
however, it has the drawback of low accuracy in subse-
quence matching.

The method proposed in reference [27] maps every
subsequence into a point in multi-dimensional space
by the wavelet transform, and then constructs a multi-
dimensional index on those points. By using the index,
it processes range queries and nearest neighbor queries.
This method enjoys nice search performance owing to
the relatively small size of the index. However, it does
not allow similarity measures other than the edit
distance, and also supports only the global alignment
rather than the local alignment.

The suffix tree [8] is an index in the form of a persist-
ent tree, and has been widely used in DNA subse-
quence matching. Hunt et al. [12] suggested an
algorithm for constructing a disk-based suffix tree on
huge DNA databases, and proposed an approximate
subsequence matching algorithm that exploits the
suffix tree. Sadakane and Shibuya [19] devised a sub-
sequence matching method that uses a compressed
suffix array [28] maintained within main memory.
Meek et al. [15] proposed a subsequence matching
method called OASIS, which combines the suffix tree
and the best-first (A*) search scheme [16]. OASIS
returns the answers in the order of the similarity score.
It performs the optimal local alignment exactly the
same as in the Smith-Waterman algorithm [7], but
provides several ten times better performance. Also, it
gives a high search performance comparable to BLAST
where query sequences are not overlong. However, the
suffix tree still suffers from three problems due to its
structural characteristics:
(1) high storage overhead,
(2) low search performance, and
(3) difficulty in seamless integration with DBMS.

2.2. Suffix tree

The suffix trie is a data structure for storing all the
suffixes of a given sequence [8]. In a suffix trie, each
edge has a symbol belonging to the alphabet as its label.
If a series of symbols on the edges along the path from
the root to a node N is a suffix of a sequence to be
indexed, the node N has a pointer to the offset from
which the suffix starts in the sequence. A suffix trie is
generalized to allow multiple sequences to be stored in
the same trie. Figure 1 shows an example of a suffix trie
constructed from two DNA sequences, S1 = ‘ACGT’
and S2 = ‘ACT’, where symbol ‘$’ represents an end

90 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

J.I. WON ET AL.

marker for each suffix, and thus is used to uniquely
identify suffixes. For instance, a suffix ‘CGT’ of S1 is
stored in the path from the root to a leaf node labeled
as (S1,1). Here, the leaf node contains a pair of
<sequence number, offset> as its label.

The suffix tree is a compressed form of a suffix trie.
A path where every node has a subsequent node as a
unique child node in a suffix trie is represented as a
single edge in a suffix tree. The label of this edge is the
concatenated one of all the labels existing on that path
in the suffix trie. If we concatenate all the labels on the
path from the root to a leaf node, we obtain a suffix of
a sequence indexed. Figure 2 shows an example of a
suffix tree, which has been converted from the suffix
trie in Figure 1. We observe that a large portion of
internal nodes have been removed.

3. Indexing method

This section proposes an indexing method which
supports efficient DNA sequence matching in large
DNA databases. Section 3.1 introduces the trie on
which our proposed index structure is based, and
Section 3.2 discusses how to construct the binary suffix
trie from a set of DNA sequences. Section 3.3 shows
the idea of indexing the leaf nodes of the binary suffix

trie, and Section 3.4 presents an index construction
algorithm.

3.1. Trie

The trie [8, 21], its name originating from the word
retrieval, was first developed by Briandais [29], and has
been intensively discussed by Knuth [30] and in other
data structure textbooks. A trie is defined as a |Σ|-ary
tree in which each edge has a symbol from the alphabet
Σ and symbols in each root-to-leaf path form a key.
Here, |Σ| is the alphabet size. A selection of subtries
at level i is determined only by the ith symbol of the
search key, not the whole key.

Trie structures have the following properties:
(1) The common prefixes of all key elements are

stored only once. This may give substantial data
compression.

(2) Trie searching is directed by a search string, and
gives search time proportional to the length of a
search string rather than the trie size.

(3) Trie shapes are independent of the order in which
a data set is presented to the trie construction
algorithms, i.e. a trie shape is uniquely deter-
mined by its data set.

(4) A trie does not need various reorganization
algorithms to keep tries balanced.

91Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

 S1 = ACGT$
 S2 = ACT$

C

A
C

G

G

G

T

T T

T T

T

$

$

$
$

$
$

(S1,0)

(S2,0) (S1,1)

(S2,1)
(S1,2)

(S1,3) (S2,2)

Fig. 1. Suffix trie built for two DNA sequences, S1 = ‘ACGT’ and S2 = ‘ACT’.

Sequence matching in large DNA databases

3.2. Binary suffix trie

The most straightforward implementation of |Σ|-ary
tries is to store |Σ| pointers in each node. This method
enables a child node to be selected in constant time.
However, it is not space-efficient because trie nodes
may contain lots of NULL pointers when |Σ| is large.

An alternative is to use dynamic data structures such
as linked lists. In the linked list representation, each
trie node stores two pointers, one to its leftmost right
sibling and one to its leftmost child. This implementa-
tion reduces a lot of NULL pointers and therefore
requires lesser storage space especially when |Σ| is
large. However, it cannot select a child node in
constant time. In the worst case, all the child nodes
have to be examined.

Shang et al. [31] suggested pointerless binary tries
which attained competitive search speed with a
minimal storage requirement. Pointerless binary tries
require the alphabet Σ to have only two symbols, 0 and
1. Therefore, every node has at most two outgoing
edges. In the pointerless binary bit-string representa-
tion, the symbols on the edges do not have to be stored
explicitly when enforcing the following rules:
(1) the outgoing edge is labeled with 0 connects to the

left child node, and
(2) the outgoing edge is labeled with 1 connects to the

right child node.
More specifically, the trie node storing the two-bit

data ‘10’ has only one child which is on its left, and the
node storing the two-bit data ‘01’ has only one child
which is on its right. Similarly, the trie node with ‘11’
has both left child and right child, and the node with

‘00’ has no child. Figure 3 shows the binary trie con-
structed from the two binary sequences S1 = ‘001010’
and S2 = ‘110100’ and Figure 4 shows its pointerless
binary bit-string representation.

In this paper, we propose an index structure for
efficient DNA sequence matching, exploiting the
basic concepts of pointerless binary tries. Our aim is
to find efficiently the subsequences matched exactly
or approximately to a query sequence. Therefore, we
extract all the suffixes from the DNA sequences and
insert each one of them into the trie. Since the
suffixes are the inputs to the trie construction algo-
rithm, the resultant tree has the properties of suffix
tries [8].

92 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

 S1 = ACGT$
 S2 = ACT$

C
A

C

G G

G

T

T

T T

T

T
$

$

$

$ $

$

(S1,0)

(S2,0)

(S1,1)
(S2,1)

(S1,2)

(S1,3) (S2,2)

Fig. 2. Suffix tree built for two DNA sequences, S1 = ‘ACGT’ and S2 = ‘ACT’.

Fig. 3. Binary trie from S1 = ‘001010’ and S2 = ‘110100’.

J.I. WON ET AL.

Suffix tries compress the input data set substantially
when the input sequences have lots of common prefixes.
A DNA sequence can be considered as a string from the
alphabet Σ = {A,C,G,T}. Since the alphabet size (which
is 4) is small, it is highly possible that the suffixes have
a considerable number of common prefixes. In this
research, we use the minimum number of bits to repre-
sent each symbol rather than using a character of eight
bits, to obtain a higher compression ratio. Note that DNA
sequences may contain wild-card characters as well as
the four typical symbols of A, C, G, and T. For example,
the wild-card N denotes one from A, C, G, and T, and
B denotes one from C, G, and T. Although wild-card
characters do not occur frequently, we need to uniquely
encode each wild-card character in addition to the
typical four characters. For instance, when the number
of disparate symbols occurring in the DNA sequences
to be indexed is at most seven, we can use three bits to
encode each symbol uniquely. If we construct the suffix
trie from DNA sequences encoded in binary, we can
expect a higher compression ratio due to the increased
number of common prefixes.

Let us examine the steps to build a binary suffix trie
using an example. Table 1 shows a binary code for each
symbol in our alphabet. Here, ‘$’ is a special character
used as an end marker for every suffix. Given two
sequences S1 = ‘ACGT’ and S2 = ‘ACT’, we first convert
all of their suffixes into the corresponding binary bit-
string representations as shown in Table 2. We then
construct the trie through successive insertions of
binary suffixes according to their lexicographic order.
Insertions based on the lexicographic order make the
trie grow in only one direction and thus facilitate the
disk-based trie construction. Figure 5 shows the binary
suffix trie constructed from the suffixes of Table 2, and
Figure 6 shows its internal representation.

For the trie construction, we use a disk-based algo-
rithm [32]. Therefore, whenever the main memory

space of a predetermined size (i.e. page size) is
occupied by a sub-trie, it is written onto secondary
storage (i.e. a disk). To prevent a sub-trie larger than a
page from being written onto a disk page, we pre-
calculate the maximum number of trie levels and the
maximum number of trie nodes that can be stored
within a single page. In each page, the child nodes of
each level are either entirely on or entirely off that
page. In other words, edges can only cross the horizon-
tal boundaries of pages, not the vertical boundaries.
This restriction is to reduce the number of disk pages
to be read during query processing.

Since the trie is partitioned into a set of pages, it is
necessary to maintain the page table to figure out the
page connections. Each entry of the page table corre-
sponds to a page and stores information related to that
page. Table 3 shows the page table for the page-
partitioned trie in Figure 5. Here, #Page is the page
number, Node is the number of nodes contained in the
page, and Addr is the page address in disk space. Top
and Bottom are the counters which contain the number
of edges into and out of the page level. The counting
stops right before the page they belong to. Each entry

93Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

11
10 01
01 10
10 01
01 10
10 10
00 00

Fig. 4. Pointerless binary bit-string representation of Fig. 3.

Table 1
Binary code of each symbol in the alphabet

Symbol Binary code

$ 000
A 001
C 010
G 011
N 100
T 101
S 110
Y 111

Table 2
Binary representations of the suffixes from S1 = ‘ACGT’ and
S2 = ‘ACT$’

Suffix Binary representation

S1: ACGT$ 001010011101000
CGT$ 010011101000
GT$ 011101000
T$ 101000

S2: ACT$ 001010101000
CT$ 010101000
T$ 101000

Sequence matching in large DNA databases

of the page table is filled right after the corresponding
page has been written on the disk.

3.3. Storing leaf nodes

Each suffix is identified by the pair of the sequence
identifier and the starting offset. When a suffix is
inserted into the trie, its identifier is stored in the cor-
responding leaf node. However, every trie node is
represented by a two-bit number in our indexing
scheme. Therefore, suffix identifiers have to be kept
separately from the trie. For example, Table 4 keeps the
suffix identifiers for the trie shown in Figure 5. Here,
#Page denotes the page number, R/C indicates the row
and column numbers at which the leaf node is posi-
tioned, and #Seq and Offset are the sequence identifier
and the starting offset respectively.

When a query sequence is given, we traverse down
the trie to find a node beyond which more comparisons
are meaningless. When the matching is successful, a
series of labels on the path between the root node and
the node visited last becomes the subsequence we are
looking for in the database. To find the locations at

94 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

0

1 2

3 4 5

0 1

2 4

5 6

3

7

0 1

2 3

4 5

0 1

2 3 4

5 6 7

0 1 2

3

5

4

6

0 1

2 3

4 5

0 1 2

3

4

0 1 2

3

4

0

11
11 10
01 11 01

10 11
01 01 10
10 01 01

01 10
10 10
01 10

11 01
01 10 10
01 01 01

10 10 00
10 10
10 10

01 10
10 10
01 10

10 00 00
10
10

10 00 00
10
10

00

3

5

7

8

6

4

2

1

9

Fig. 6. Internal representations of the binary suffix trie in Fig. 5.

Fig. 5. Binary suffix trie constructed from the suffixes of
Table 2.

Table 3
Page table for the page-partitioned trie in Fig. 5

#Page Top Bottom Node Addr

1 0 0 6 84
2 0 0 8 54
3 2 3 6 108
4 0 0 8 24
5 2 3 7 132
6 0 0 6 0
7 2 2 5 159
8 0 0 5 180
9 0 0 1 201

Table 4
Leaf node table for the index in Fig. 5

#Page R/C #Seq Offset

9 0 0 S1 0
8 0 1 S2 0
8 0 2 S1 1
7 0 1 S2 1
7 0 2 S1 2
5 0 2 S1 3
5 0 2 S2 2

J.I. WON ET AL.

which the subsequences matched to a query sequence
start, we need to retrieve all the leaf nodes under the
node visited last and get the suffix identifiers stored in
these leaf nodes. When the index is large and the
traversal ends at a position not deep, a large portion of
the trie has to be visited.

In this work, we propose to use a multi-dimensional
index to speed up the operation that retrieves all the
leaf nodes under a given internal node. By regarding a
binary bit-string representation of a suffix as a multi-
dimensional key, we build a multi-dimensional index
from a set of suffixes. Notice that suffixes do not have
the same length. Therefore, we need the following
scheme to convert a suffix of variable length into a set
of predetermined k-integers.
(1) When the binary bit-string representation of a

suffix is shorter than k-integer length, we append
multiple 0s to the end of a binary bit-string to
make it be of k-integer length.

(2) When the binary bit-string representation of a
suffix is longer than k-integer length, we cut out
the rightmost bits so that the resultant binary bit-
string becomes of k-integer length.

Figure 7 shows the multi-dimensional index used for
direct access to the leaf nodes in the binary suffix trie
for two sequences S1 = ‘ACGT’ and S2 = ‘ACT’. In this
figure, we use a two-byte integer to denote each binary
suffix, and also assume k is 1. For example, the suffix
‘ACT$’ has the binary bit-string representation
‘001010101000’ and it is shorter than two bytes; there-
fore, four 0s are appended to the end of the binary
bit-string thus making it ‘0010101010000000’. The
two-byte integer ‘10880’ corresponding to
‘0010101010000000’ is then inserted into the multi-
dimensional index with its suffix identifier.

3.4. Index construction algorithm

The proposed algorithm for constructing the binary
suffix trie from DNA sequences is summarized as
follows:
(1) Extracting suffixes. We extract all the suffixes from

each of the DNA sequences in the target database.
(2) Converting into binary suffixes. Using the

minimum number of bits for an alphabet, we
convert every suffix into the corresponding binary
bit-string representation.

(3) Constructing the trie. We sort the suffixes accord-
ing to their binary bit-string representation, and
insert each one of them sequentially into the trie.
(a) When a new binary suffix is inserted into the

trie, existing trie nodes are modified and/or
new trie nodes are created. A two-bit number
representing a trie node is written on an
appropriate page area.

(b) When an overflow may happen on inserting
a new trie node into the current page, we first
write the current page onto the disk and start
a new page with the trie node we are going
to add. Right after the current page is written
onto the disk, the information on that page is
recorded in the page table.

(c) After inserting all the binary suffixes into the
trie, we denote each leaf node by k-integers
and then insert it into the k-dimensional
index.

4. Query processing method

This section proposes query processing methods to
answer the queries of DNA sequence matching using
the index structure described in Section 3. Section 4.1

95Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

Suffix Binary Representation

 ACGT$
 ACT$

:
 T$

 001010011101000
 001010101000

:
 101000

#Seq, Offset

K-dimensional
Integer

R* Tree

10704
10880

:
40960

Fig. 7. Multi-dimensional index supporting direct leaf node access within the binary suffix trie in Fig. 5.

Sequence matching in large DNA databases

gives an algorithm which traverses the binary suffix trie
for exact subsequence matching and Section 4.2
describes the method which exploits the multi-dimen-
sional index for leaf-node retrieval. Section 4.3
explains the method used to find the subsequences
approximately matching a query sequence.

4.1. Exact subsequence matching

Since each trie node is represented by a two-bit number
in the proposed index, the pointers from parents to
children are not stored explicitly. The information on
the trie levels is not stored explicitly either. Therefore,
while traversing down the index to find the subse-
quences matched to a query sequence, the algorithm
has to fetch the corresponding page and then extract
that implicit information using the data in the page.

The algorithm Search-Trie which traverses the binary
suffix trie T to retrieve the subsequences matched to a
query sequence is shown in Algorithm 1. We assume
that the query sequence Q has been already converted
to its binary form. Remember that the information
related to the page partitioning is maintained in the
page table P. Let Li denote the ith trie level in the page
that is being examined. The algorithm uses the follow-
ing four variables to figure out the internal structure of
the page.

The variable Si stores the total number of nodes
located at Li. If a node at Li has the value ‘11’, it will
increase Si+1 by one. On the contrary, if a node at Li has
the value ‘00’, it will decrease Si+1 by one. The variable
Ni,f denotes the position of the rightmost node at Li.
Ni+1,f is simply computed by summing Ni,f and Si+1. The
variable Ni,c indicates the position of the node at Li that
should be compared with the ith query bit. The
variable Ci stores the total number of 1 bits counted
from the leftmost node at Li to the node positioned at
Ni,c. Ni+1,c is obtained by summing Ni,f and Ci.

Alogrithm 1 : Query processing algorithm Search-Trie

Input : binary suffix trie T, query sequence Q, page table P
Output : set of answers

1 initialize C0, N0,c, S0, and N0,f ;
2 for j := 0; j < p_Height; j++ do
3 if j > 0 then
4 page_change (P);
5 reset C0, N0,c, S0, and N0,f ;
6 for i := 0; i < n_Height; i++ do
7 while isBefore(Ni,c) do
8 increase Ci;
9 update Si;

10 if !(match(node(Ni,c), Qi)) then
return{};

11 if isLast(Qi) then
return find_answers();

12 get(Qi+1); increase Ci; update Si;
13 while isBefore(Ni,f) do

update Si;
14 if i < (n_Height-1) then

reset Ci+1, Ni+1,c, Si+1, and Ni+1,f ;

The algorithm Search-Trie operates as follows. We
assume that the index has p_Height page levels and
each page level has n_Height node levels. First, we ini-
tialize all the variables according to the fact that the
first node of the first page in the index is the root (line
1). The lines 3–5 in the external for loop (lines 2–14)
replace the current page level with the next page level.
The function page_change(P) in line 4 computes the
location of the next page using the information in the
page table P, and reads in the next page. Next, all the
variables are updated before entering into the stage of
traversing the nodes in the new page. The internal for
loop (lines 6–14) is for handling a node level, and it
consists of the following four steps. Increasing Ci and
updating Si, the first step (lines 7–9) sequentially reads
the nodes positioned before Ni,c. The second step (lines
10–12) checks whether the node Ni,c matches the ith
query bit Qi or not. If not matched, the statement in line
10 is executed. If matched, the algorithm checks if
there are more query bits to be examined. If there is no
more query bit left, the function find_answers() is
called in line 11. The function find_answers() retrieves
the suffix identifiers from the leaf nodes under Ni,c. If
there are more query bits to be examined, the statement
in line 12 is executed where the next query bit is read
and the variables Si and Ci are updated and increased
respectively. While updating the variable Si, the third
step in line 13 sequentially reads the nodes positioned
before Ni,f. The final step in line 14 resets all the vari-
ables if there remain more node levels in the current
page.

To see how the algorithm actually works, let us
consider the query sequence ‘T’ and the suffix trie
shown in Figure 6. Figure 8 shows how the variables
change their values as the algorithm traverses down the
index. Here, we use the leaf node table in Table 4 to
retrieve the leaf nodes under the node that has been
matched with the last query bit. A more sophisticated
method for this operation is presented in Section 4.2.

The algorithm starts with the binary bit-string repre-
sentation ‘101’ for the query sequence ‘T’. The algo-
rithm first compares the first query bit with the node 0

96 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

J.I. WON ET AL.

of the first page, which is a root node. Then, it
compares the second and third query bits with the
nodes 2 and 5, respectively. Then, page 3 becomes the
current page and all the variables change their values
accordingly. Since all the query bits are matched
successfully, all the leaf nodes under node 1 of page 3
are retrieved by the depth-first traversal on the index.
When the node whose value is ‘00’ is found during this
depth-first traversal, we consult the leaf node table to
retrieve the corresponding suffix identifiers. In this
example, node 2 in page 5 is the leaf node we are
looking for. Two suffix identifiers (S1,3) and (S2,2) are
then obtained from the leaf node table.

4.2. Direct access to leaf nodes

The algorithm Search-Trie has a step to retrieve all the
leaf nodes under the node Ni,c at which the last query
bit is matched successfully. This operation is mainly
performed in the function find_answers(). The multi-
dimensional index introduced in Section 3.3 enables
direct retrieval of the leaf nodes under Ni,c. When the
path p from the root to Ni,c matches the query sequence,
we take one of the following three options according to
the length of p.
(1) When p has a length shorter than k-integers: let

p0 denote the binary bit-string of k-integer length
obtained by appending multiple 0s to the end of
p. And let p1 denote the binary bit-string of k-

integer length obtained by appending multiple 1s
to the end of p. From the multi-dimensional
index, we retrieve all the leaf nodes having values
between p0 and p1.

(2) When p has the length of k-integers: from the
multi-dimensional index, we retrieve all the leaf
nodes having the value p.

(3) When p has a length longer than k-integers: let pt
be the prefix of p with k-integer length. From the
multi-dimensional index, we retrieve all the leaf
nodes having the value pt. Then, we perform post-
processing to detect and discard false matches.

Let us consider the query sequence ‘T’ again. Figure
9 shows how the multi-dimensional index is used to
directly retrieve the leaf nodes under a given internal
node. In this figure, we simply assume that the multi-
dimensional index has only one dimension for 2-byte
integers. The path p with the label ‘101’ matches the
binary bit-string representation ‘101’ of the query
sequence ‘T’. To find the leaf nodes under p’s end node,
we consult the multi-dimensional index. Since the
length of p is shorter than a 2-byte integer, we generate
p0 = ‘1010000000000000’ by appending thirteen 0s to
the end of p; and p1 = ‘1011111111111111’ by append-
ing thirteen 1s to the end of p. Then, we search the
multi-dimensional index for the leaf nodes having a
value between p0 and p1. As a result, two suffix identi-
fiers (S1,3) and (S2,2) are obtained.

97Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

i Node(Ni,c) Qi Ci Ni,c Si Ni,f

0 0 1 0

2,0 2 2 21110

1

2

3

4

5

11

10

01

11

01

0

1 4,0

3

1

3,0

2

5

9

3

3

3

4

4

5

9

0

1

2

3

4

5

01

10

10

10

01

10

0 1 2 1

[#Page : 1]

[#Page : 3]

Fig. 8. The trace of four variables Ci, Ni,c, Si, and Ni,f during the traversal of the index in Fig. 6 for a given query sequence ‘T’.

Sequence matching in large DNA databases

4.3. Approximate subsequence matching

The basic method for approximate subsequence
matching in DNA databases is the dynamic program-
ming (DP) technique. Given two sequences Q and S, the
DP technique finds their optimal distance by building
a two-dimensional DP table of |Q| + 1 rows and
|S| + 1 columns. The recurrence relations correspon-
ding to the similarity measure of a target application
are used to fill in each cell of the DP table. The edit
distance function [8, 12] is a popular similarity
measure for approximate subsequence matching.

There have been several approaches [9, 12, 13] which
employ the suffix tree as an index to speed up approx-
imate subsequence matching. They traverse the suffix
tree in the depth-first order and build-up the DP table
between a query sequence and a path from the root
node of the suffix tree. The proposed binary suffix trie
can also be used as an index structure for approximate
subsequence matching. However, since every node is
represented by a two-bit number in the binary suffix
trie, we need to access more than one node to append
a new column to the DP table.

Let us use an example to explain the proposed
approximate subsequence matching algorithm.
Suppose that we want to find the subsequences whose
edit distances to the query sequence ‘AGG’ are not
larger than 1. Figure 10 shows how the DP tables are
constructed during the traversal of the binary suffix trie
shown in Section 3. Since every symbol is encoded by
three bits, the algorithm accesses three successive
nodes to append a new column to the existing DP table.
That is, the columns for the symbols ‘A(001)’, ‘C(010)’,

and ‘G(011)’ are appended individually to the DP table
when the algorithm reaches the nodes v, w, and x,
respectively. D1 in Figure 10 is the resultant DP table.
Whenever a new column is added to the DP table, we
check whether or not the cell at the last row of the newly
added column has a value not larger than a distance
threshold. If so, all the leaf nodes under the node being
visited satisfy the query. We use the multi-dimensional
index to directly retrieve such leaf nodes. In D1 of
Figure 10, the column for the symbol ‘G(011)’ is the
newly added column. Since the value of the cell at its
last row is 1, all the leaf nodes under node x satisfy the
query. The DP table D2 is obtained when node y is
visited. Since all the cells in the last column have values
larger than 1, the traversal stops at node y and comes
back to its parent. Note that the first two columns of
tables D1 and D2 are identical. These two columns are
shared by the two tables to save space and time.

5. Performance evaluation

In this section, we show the effectiveness of our
approach via performance evaluation with extensive
experiments. Section 5.1 describes the environment for
experiments, and Section 5.2 presents and analyzes the
results.

5.1. Environment

In the experiments, we have used five sets of DNA
sequences downloaded from GenBank [33]. They are a
human chromosome 18 that consists of three different

98 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

1

0

1

#Seq, Offset

K-dimensional
Integer

R* Tree

[40960, 49151]

0

1 2

3 4 5

0 1

2 4

5 6

3

7

0 1

2 3

4 5

0 1

2 3 4

5 6 7

0 1 2

3

5

4

6

Fig. 9. Multi-dimensional index used to directly retrieve the leaf nodes under a given internal node.

J.I. WON ET AL.

sequences of 1.07 Mbp, 2.16 Mbp, and 4.22 Mbp, a
human chromosome 21 of 43.3 Mbp, and a human
chromosome 19 of 72.3 Mbp. As query sequences, we
have randomly extracted some subsequences of arbi-
trary lengths from such DNA sequences. Other than A,
C, G, and T, the DNA sequences contain some infre-
quent wild-card characters such as N, S, and Y. In
addition, we have to use $ to represent the end of a
sequence. Thus, eight different characters appear
within the DNA sequences used in our experiments.

The hardware platform is the Pentium IV 2GHz PC
equipped with 1 Gbytes main-memory and 40 Gbytes
HDD. The software platform is Windows 2000 Server.
The performance factors for comparing approaches are
the size of indexes and the elapsed time for DNA
sequence matching.

5.2. Results and analyses

In experiment 1, we have compared the three
approaches Trie-Rtree, Trie-Naive, and Suffix in respect

of index size. Trie-Rtree represents our approach
employing the trie using pointerless binary bit-string
representation in conjunction with a multi-dimen-
sional index. As a multi-dimensional index, we have
used the R*-tree [34], which is most widely used in the
literature. Trie-Naive also represents our approach
employing the trie using pointerless binary bit-string
representation but without employing a multi-dimen-
sional index. Finally, Suffix is the previous approach
based on the suffix tree. We have applied an incremen-
tal disk-based algorithm [32] for suffix tree construc-
tion, and also have allocated a 32 byte memory chunk
for each node in the suffix tree.

Table 5 shows the sizes of the index components in
the three approaches with changing data sizes. We have
set the page size for each index to 4K bytes. The index
in Suffix consists of internal nodes and leaf nodes for
the suffix tree. The index in Trie-Naive consists of a
binary suffix trie, a page table, and a leaf node table.
The page table maintains the entries, each of which
corresponds to a page in a trie, and thus its size is not

99Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

0

1

3

0

2

5

0

2 3

5 6

0 1

2 3

4 5

0 1

3

4

0

A

C

G T

T $

$

v

w

x y

(001) (010) (101)(001) (010) (011)

D1

A C G
0 1 2 3

A 1
2
3

G
G

0 1 2
1 1 1

12 2

D2

A C T
0 1 2 3

A 1
2
3

G
G

0 1 2
1 1 2

22 2

Fig. 10. DP tables constructed from the binary suffix trie of Fig. 5.

Sequence matching in large DNA databases

that large. On the other hand, the leaf node table is
fairly large since it has the entries, each of which cor-
responds to a suffix in sequences. The index in Trie-
Rtree is almost the same as that in Trie-Naive, but it
additionally maintains an R*-tree for fast access to leaf
nodes in the trie.

Figure 11 shows the change in index size in the three
approaches with different data sizes. We observe that
the index size increases linearly in proportion to the
data size in all the approaches. In comparison with
Suffix, our Trie-Naive and Trie-Rtree save around 48%
and 24% storage space, respectively.

In experiment 2, we have compared the three
approaches along with Seqscan in terms of the elapsed
time for exact subsequence matching. Seqscan is based
on sequential scan and is regarded as the simplest
baseline method for DNA sequence matching. For this
experiment, we have used human chromosome 21 of
43.3Mbp as a data sequence. The total elapsed time is
the time spent in finding the offsets in the DNA
sequence from which subsequences exactly matched a
query sequence start.

In the case of Suffix, the post-processing time grows
as a query sequence decreases in length. When the

100 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

Table 5
Index sizes of three approaches

Data size Trie-Rtree Trie-Naive Suffix

trie_idx page_tbl R*_tree trie_idx page_tbl leaf_tbl

1.07 Mbp 15.9M 80.3K 30.5M 15.9M 80.3K 12.7M 54.5M
2.16 Mbp 31M 155K 59.6M 31M 155K 25.6M 108M
4.22 Mbp 59.9M 300K 116.5M 59.9M 300K 49.7M 209M
43.3 Mbp 577M 2.82M 1,132M 577M 2.82M 517M 2.07G
72.3 Mbp 878M 4.29M 1,637M 878M 4.29M 858M 3.31G

0

500

1000

1500

2000

2500

3000

3500

1.07 2.16 4.22 43.3 72.3

Data Size (Mbp)

In
d

ex
 S

iz
e

(M
b

yt
es

)

Trie-Naive Trie-Rtree Suffix

Fig. 11. Index sizes with different data sizes.

J.I. WON ET AL.

lengths are larger than 10, however, the post-process-
ing time becomes nearly 0. After a path in a suffix tree
or a binary suffix trie is found to be matched with the
query sequence at an internal node N, we have to find
all the leaf nodes under the node N. We call the time
spent in this processing the post-processing time. In
cases of Trie-Naive and Trie-Rtree, the post-processing
time occupies a large portion of the total elapsed time
when a query sequence is short. In particular, Trie-
Naive spends most of its time in post-processing.

Table 6 shows the elapsed time in the four
approaches with changing query sequence lengths.
The values within parentheses represent the post-
processing times. In Suffix, as the length of a query
sequence increases up to 10, the post-processing time
decreases. In cases of Trie-Naive and Trie-Rtree, the
post-processing time occupies a majority of the total
elapsed time.

Figure 12 shows the total elapsed times for DNA
sequence matching when using all four approaches.
The X axis denotes a varying query sequence length,
and the Y axis the elapsed time in the unit of a milli-
second. We note that the Y axis is in log-scale. Seqscan
performs poorly regardless of query sequence lengths.
Trie-Navie performs well with long query sequences,
but performs poorly with short query sequences due to
its high overhead for post-processing. On the other
hand, Trie-Rtree shows good performance regardless of
query sequence lengths, and achieves 13–29 times
speedup compared with Suffix, and 54–145 times
speedup compared with Seqscan.

In experiment 3, we have compared the two
approaches Trie-Rtree and Suffix in terms of the
elapsed time for approximate subsequence matching.
We have employed two different approaches: one is to
find all the subsequences whose edit distances to a
query sequence are not larger than k, which has been
commonly used in DNA subsequence matching; and

the other is to find similar subsequences using the best-
first(A*) search algorithm. The data sequence used in
the experiment is human chromosome 21 of 43.3 Mbp.

Table 7 shows the elapsed times of approximate sub-
sequence matching by Suffix and Trie-Rtree for finding
all the subsequences whose edit distances to a query
sequence are not larger than 1. In the current experi-
ment, we follow the method of reference [13], consider-
ing only short query sequences with a small tolerance.
The elapsed time here is the total time required for
obtaining pairs <sequence number, offset> of all the
similar subsequences. The values within parentheses
represent the post-processing time spent in finding leaf
nodes. The result shows that Suffix has a large elapsed
time for short query sequences due to a big post-
processing time. On the other hand, Trie-Rtree shows
better performance due to direct access to leaf nodes by
using the R*-tree. For long query sequences, however,
a large number of bit operations increase the time for
traversing the suffix trie, and subsequently enlarge the
entire elapsed time.

Figure 13 depicts the result of comparing the elapsed
times of Suffix*, Trie-Rtree* and SW. (SW represents
elapsed time of approximate subsequence matching by
the Smith-Waterman algorithm.) Here, the elapsed time
is the total time required to find a set of subsequences,
each of which is most similar to a query sequence in
each data sequence, from a DNA database. Trie-Rtree*
and Suffix* represent the elapsed time of approximate
subsequence matching by Trie-Rtree and Suffix, respec-
tively, that employ the best-first (A*) search algorithm
[15]. Also, the result shows that Trie-Rtree* performs
better than Suffix*. This is because the way nodes are
stored in the suffix trie harmonizes with the level-first
traversal fashion of the best-first (A*) search algorithm.
That is, as mentioned in Section 3.2, all the child
nodes of each level of a page are either entirely on or
entirely off that page. This is quite effective in such an

101Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

Table 6
Query processing times of four approaches

Query length Query processing time (ms)

Trie-Rtree Trie-Naive Suffix Seqscan

6 68.1 (62.1) 230,423.5 (230,417.5) 919.2 (256.2) 3702.7
8 37.3 (24.2) 13,612.4 (13,599.3) 741.3 (14.5) 3701.9
10 33 (19.2) 1,152.4 (1,138.6) 717.8 (1.7) 3681.1
15 25.1 (9.4) 104.9 (89.2) 726.8 (0.1) 3643.6
30 34.7 (8.1) 79.4 (52.8) 729.8 (0) 3761.6
60 43.7 (8.2) 67.5 (32) 823.4 (0) 3677.5

Sequence matching in large DNA databases

environment where all the sibling nodes are accessed
together as in the best-first(A*) search. The result
shows that, compared with Suffix* and SW, Trie-Rtree*
performs about four to nine times better and about 592
to 2,505 times better, respectively.

6. Conclusions

DNA sequence matching is a widely-used operation in
molecular biology. Since DNA databases are huge in
general, fast indexing is crucial for efficient processing
of DNA sequence matching. In this paper, we have first
pointed out the problems occurring in the suffix tree for
DNA sequence matching: (1) high storage overhead, (2)
low search performance, and (3) difficulty in seamless

integration with DBMS. Then, we have proposed a
novel index structure that resolves them.

Our index employs a trie as its primary structure and
implements it by using binary bit-string representation
without pointers. Major advantages of this implemen-
tation are to reduce the storage overhead considerably
and to build its structure easily in page units. Also, our
index employs a multi-dimensional index as a second-
ary structure for fast access to the target leaf nodes after
traversing the trie. With the proposed index, we can
successfully alleviate the three problems of the suffix
tree. We have also proposed algorithms that process
DNA sequence matching effectively, based on the
proposed index.

To verify the effectiveness of our approach, we have
performed a series of experiments. The results reveal
that the proposed approach, which requires smaller
storage space, can be a few orders of magnitude faster
than the suffix tree. In cases of exact matching, Trie-
Rtree, our enhanced approach, runs 13 to 29 times
faster than Suffix. In cases of approximate matching, it
achieves four to nine times speedup over Suffix.

As a further study, we are investigating sophisticated
techniques to improve the performance of approximate
subsequence matching in cases with long query
sequences as well as large tolerance values. For this, we
are considering employing a novel method for tree
traversal that fully makes use of the arrangement of
index nodes in a disk. Also, we plan to devise

102 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

Table 7
Elapsed times spent in finding all the subsequences whose
edit distances to a query sequence are not larger than 1

Query Total Query processing time (ms)
length hits

Trie-Rtree Suffix

6 388,321 817.4 (623) 14,248.5 (7446)
8 33,422 854 (412.7) 3,120.2 (674.9)
10 3,857 1,157.5 (365) 3,055.6 (109)
15 22 1,216.9 (3.1) 3,456.8 (0.4)

1

10

100

1000

10000

100000

1000000

6 8 10 15 30 60

Query Length

Q
ue

ry
 P

ro
ce

ss
in

g
Ti

m
e

(lo
g

sc
al

e,
 m

se
c)

Suffix
Seqscan
Trie-Navie
Trie-Rtree

Fig. 12. Elapsed time of exact subsequence matching with different query sequence lengths.

J.I. WON ET AL.

techniques that allow incremental updates on the
binary trie disk structure.

Acknowledgements

This work was supported by a Korea Research Foun-
dation Grant funded by the Government of Korea
(MOEHRD, Basic Research Promotion Fund) KRF-
2005–206-D00015; and by KOSEF Basic Research
Program Grant R04–2003–000–10048–0; and by the
MIC (Ministry of Information and Communication) of
Korea under the IT Research Center support program
(IITA–2005–C1090–0009) supervised by the IITA
(Institute of Information Technology Assessment).

References

[1] C. Gibas and P. Jambeck, Developing Bioinformatics
Computer Skills (O’Reilly and Associates, Tokyo, 2001).

[2] D.W. Mount, Bioinformatics: Sequence and Genome
Analysis (Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, 2001).

[3] R.S.C. Goble, P. Baker and A. Brass, A Classification of
tasks in bioinformatics, Bioinformatics 17(2) (2001)
180–88.

[4] D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell and
B.F. Quellette, Genbank, Nucleic Acids Research 26(1)
(1998) 1–7.

[5] S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman,
Basic local alignment search tool, Journal of Molecular
Biology 215 (1990) 403–10.

[6] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z.
Zhang, W. Miller and D.J. Lipman, Gapped BLAST and
PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Research 25(17) (1997)
3389–3402.

[7] T. Smith and M. Waterman, Identification of common
molecular subsequences, Journal of Molecular Biology
147 (1981) 195–97.

[8] G.A. Stephen, String Searching Algorithms (World
Scientific Publishing, River Edge, 1994).

[9] E. Ukkonen, Approximate string matching over suffix
trees. In: A. Apostolico et al. (eds), Proceedings of the
4th Annual Symposium on Combinatorial Pattern
Matching (CPM93) 1993 (Springer, 1993) 228–42.

[10] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O.
White and S.L. Salzberg, Alignment of whole genomes,
Nucleic Acids Research 27 (1999) 2369–76.

[11] S. Kurtz, J. Choudhuri, E. Ohlebusch, C. Schleiermacher,
J. Stoye and R. Giegerich, REPuter: the manifold appli-
cations of repeat analysis on a genome scale, Nucleic
Acids Research 29(22) (2001) 4633–42.

[12] E. Hunt, M.P. Atkinson and R.W. Irving, Database
indexing for large DNA and protein sequence collec-
tions, VLDB Journal 11(3) (2002) 256–71.

[13] G. Navarro and R. Baeza-Yates, A hybrid indexing
method for approximate string matching, Journal of
Discrete Algorithms 1(1) (2000) 205–39.

[14] G. Navarro and R. Baeza-Yates, A new indexing method
for approximate string matching. In: M. Crochemore and

103Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

1

10

100

1000

10000

100000

1000000

6 8 10 15 30 60
Query Length

Q
ue

ry
 P

ro
c

es
si

ng
 T

im
e

(lo
g

sc
a

le
,

m
se

c
)

Suffix*
Trie- Rtree*
SW

Fig. 13. Elapsed times spent in finding the subsequence most similar to a query sequence.

Sequence matching in large DNA databases

104 Journal of Information Science, 32 (1) 2006, pp. 88–104 © CILIP, DOI: 10.1177/0165551506059229

M. Paterson (eds), Proceedings of the 10th Annual Sym-
posium on Combinatorial Pattern Matching (CPM99)
1999 (Springer, 1999)163–85.

[15] C. Meek, J.M. Patel and S. Kasetty, OASIS: an online and
accurate technique for local-alignment searches on bio-
logical sequences. In: J.C. Freytag et al. (eds), Proceed-
ings of the 29th International Conference on Very Large
Databases(VLDB03) 2003 (Morgan Kaufmann, 2003)
920–21.

[16] K. Kelly and P. Labute, The A* Search and Applications
to Sequence Alignment (1996). Available at:
www.chemcomp.com/Journal_of_CCG/Articles/astar.ht
m (accessed 28 July 2005).

[17] S. Kurtz and C. Schleiermacher, REPuter: fast computa-
tion of maximal repeats in complete genomes, Bioinfor-
matics 15(5) (1999) 426–7.

[18] R. Giegerich, S. Kurtz and J. Stoye, Efficient implemen-
tation of lazy suffix trees, Software-Practice and Experi-
ence 33 (2003) 1035– 49.

[19] K. Sadakane and T. Shibuya, Indexing huge genome
sequences for solving various problems. In: H. Matsuda
et al. (eds), Proceedings of the 12th Genome Informat-
ics (GIW01) 2001 (Universal Academy Press, 2001)
175–83.

[20] H. Wang et al., BLAST++: a tool for BLASTing queries
in batches. In: Y.P.P. Chen (ed.), Proceedings of the 1st
Asia-Pacific Bioinformatics Conference (APBC03) 2003
(Australian Computer Society, 2003) 71–9.

[21] E. Horowitz, S. Sahni and S. Anderson-Freed, Funda-
mentals of Data Structures in C (Computer Science
Press, New York, 1993).

[22] J. Buhler, Efficient large-scale sequence comparison by
local-sensitive hashing, Bioinformatics 17 (2001)
419–28.

[23] B. Ma, J. Tromp, and M. Li, Patternhunter: faster and
more sensitive homology search, Bioinformatics 18
(2002) 440–45.

[24] A. Califano and I. Rigoutsos, FLASH: a fast look-up
algorithm for string homology. In: L. Hunter et al. (eds),

Proceedings of the 1st International Conference on
Intelligent Systems for Molecular Biology, 1993 (AAAI
Press, 1993) 56–64.

[25] C. Fondrat and P. Dessen, A rapid access motif database
(RAMdb) with a searching algorithms for the retrieval
patterns in nucleic acids or protein databanks, Computer
Applications in the Biosciences 11(3) (1995) 273–9.

[26] H.E. Williams and J. Zobel, Indexing and retrieval for
genomic databases, IEEE TKDE 14(1) (2002) 63–78.

[27] T. Kaheci and A.K. Singh, An efficient index structure
for string databases. In: P.M.G. Apers et al. (eds), Pro-
ceedings of the 27th International Conference on Very
Large Databases (VLDB01) 2001 (Morgan Kaufmann,
2001) 351–60.

[28] U. Manber and G. Myers, Suffix arrays: a new method
for on-line string searches, SIAM Journal on Computing
22(5) (1993) 935–48.

[29] R. de la Briandais, File searching using variable length
keys. In: Proceedings of Western Joint Computer Confer-
ence, 1959 (AFIPS Press, 1959) 295–8.

[30] D.E. Knuth, The Art of Computer Programming 3:
Sorting and searching (Addison-Wesley, Boston, 1973).

[31] H. Shang and T.H. Merrett, Tries for approximate string
matching, IEEE Transactions on Knowledge and Data
Engineering 8(4) (1996) 540–47.

[32] P. Bieganski, J. Riedl and J.V. Carlis, Generalized suffix
trees for biological sequence data: applications and
implementation. In: Proceedings of the 27th Inter-
national Conference on System Sciences 1994 (IEEE,
1994) Vol. 5, 35–44.

[33] Genbank. Available at: www.ncbi.nlm.nih.gov (accessed
28 July 2005).

[34] N. Beckmann, H. Kriegel, R. Schneider and B. Seeger,
The R*-tree: an efficient and robust access method for
points and rectangles. In: H. Garcia-Molina and H.V.
Jagadish (eds), Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data 1990
(ACM Press, 1990) 322–31.

