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Abstract

The ability to provide thousands of gene expression values simultaneously makes microarray data very useful for phe-
notype classification. A major constraint in phenotype classification is that the number of genes greatly exceeds the number
of samples. We overcame this constraint in two ways; we increased the number of samples by integrating independently
generated microarrays that had been designed with the same biological objectives, and reduced the number of genes
involved in the classification by selecting a small set of informative genes. We were able to maximally use the abundant
microarray data that is being stockpiled by thousands of different research groups while improving classification accuracy.
Our goal is to implement a feature (gene) selection method that can be applicable to integrated microarrays as well as to
build a highly accurate classifier that permits straightforward biological interpretation. In this paper, we propose a two-
stage approach. Firstly, we performed a direct integration of individual microarrays by transforming an expression value
into a rank value within a sample and identified informative genes by calculating the number of swaps to reach a perfectly
split sequence. Secondly, we built a classifier which is a parameter-free ensemble method using only the pre-selected infor-
mative genes. By using our classifier that was derived from large, integrated microarray sample datasets, we achieved high
accuracy, sensitivity, and specificity in the classification of an independent test dataset.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recently researchers have examined tumor cell specific gene expression patterns and have made use of the
molecular characteristics of tumor tissue for diagnostic purposes. Since microarray technology is capable of
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Fig. 1. Organization of microarray data. (Si is a sample, Gi is a gene, while C1 and C2 are each class labels.)
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screening thousands of genes simultaneously, microarray data is expected to bring about drastic advances in
tumor diagnosis. As shown in Fig. 1, microarray data are organized as matrices with each column representing
a sample, each row representing a gene, and each cell representing the particular gene expression value within
a particular sample. Since the simultaneous measurement of expression levels using tens of thousands of
probes is now feasible, statistical methods are required for the analysis and interpretation of this large volume
of data.

When using statistical methods, increasing sample size is usually desirable for obtaining more reliable clas-
sification results. Performing an analysis with a large sample is essential for deducing a meaningful conclusion
from the data when working on tumor-related research. Recently, Rhodes [17] performed a meta-analysis of
multiple datasets that addressed a similar hypothesis. His meta-analysis was used to validate and statistically
assess all of the positive results simultaneously.

Even when considering only microarray data with the same experimental objectives, difficulties in integrat-
ing microarray data across experiments can arise from microarray platform differences, gene sets, and technol-
ogy and protocol variation between labs. Deciding how to combine the data on the gene expression level in
different microarrays is a challenging problem because gene expression levels measured from different exper-
iments are not necessarily directly comparable. In this paper, we propose a method to integrate independent
microarray datasets and to build a classifier through two stages.

Firstly, we combined the integration algorithms and the filtering methods and used them to select a set of
informative genes. Our integration algorithms do not require massive computation for normalization. Our
informative gene filtering algorithm is a rank-based approach within each sample. In the second stage of
the process, we built a classifier using only the pre-selected informative genes. The biological interpretation
of our classifier is relatively simple. Our classifier consists of K (P5) rules where each rule has a relationship
among three genes and a class label. Since this second stage of classifier building uses only the pre-selected
genes relevant to the classification, our classifier is capable of increasing classification accuracy while offering
affordable computation times even for integrated microarray datasets of large sample size. Experimental
results showed that our system was able to classify with better accuracy than conventional approaches as
the sample size of the training datasets grew larger. Our two-stage system effectively maximizes the use of
the accumulated independent microarray datasets and sheds light on a new paradigm in the field of microarray
data integration.

2. Related work

2.1. Microarray data integration

Several methods have been proposed previously for integrating microarray data. One method uses a meta-
mining technique [4] in which individually obtained microarray experiment results are integrated and ana-
lyzed. However, because the sample size within each individual experiment is generally small, the experimental
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results themselves are not reliable and the integration of these results may produce an even worse analysis.
Another method of integration is to normalize data obtained from individual research into values derived
from a common scale and then combine them [10]. The most representative example of this method involves
transforming the data to Z-Scores before combining them. However, this method, which also involves a mas-
sive normalization process, involves considerable computation during the preprocessing stage. Studies pre-
senting data integration models other than those mentioned above also include a method [13] that uses a
correlation signature for integrating heterogeneous microarray data.

2.2. Informative gene selection

The greatest restriction in analyzing microarray data is that the number of genes is far bigger than the num-
ber of samples involved in the experiment [6]. In reality, however, the number of genes that affect classification
is very limited. Thus, most genes are ‘‘noise’’ genes that do not affect class discrimination. Informative genes,
as shown in Fig. 2, can be defined as genes with high expression values on the whole within Class C1 and low
expression values on the whole within Class C2. On the other hand, genes that do not provide a consistent level
of expression values for specific classes can be regarded as noise genes that do not have any relevance [23,24].
Therefore, a rational method is to firstly identify only the relevant genes that participate in phenotype iden-
tification for specific diseases, then come up with the classification method using only those genes.

The process of eliminating genes not associated with the disease phenotype while also identifying only the
informative genes is called the feature selection, and it is very important for microarray data analysis [2]. Cur-
rently, various methods can be used to precisely and effectively select these informative genes. Linear combi-
nation method like the PCA (Principal Component Analysis) [3] is typical of the methods used in feature
selection. The PCA method does reduce the dimension of microarray data by using eigen vectors, but this
method does not individually find genes that are relevant to classification. Another typical feature selection
method, the parametric method, assumes a statistical model representing the data, like the t-statistic or the
Golub [8] method. This method saves parameters (e.g. mean and variance) that can represent the model. Since
the parametric method replaces thousands of gene expression values with a very small number of parameters,
information loss could possibly become a problem. On the other hand, the non-parametric method [2,18]
aligns all sample values of a single gene and calculates the score (degree of interruption for a complete sepa-
ration) representing how much that gene was differently expressed between the two class groups. When the
gene is considered as a feature, the most commonly used feature selection method is the score-based approach.
The score-based feature selection method measures in statistical values how much more significant each fea-
ture is compared to the other features, then sorts them, and selects the top ranked features. The most popular
score-based feature selection methods are the Information Gain [9,27], Relief-F [20], and the method using
correlation coefficient [1].
Fig. 2. An informative gene viewed as a type of expression value.
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The Information Gain method is a popular feature filtering algorithms to rank features. This method has
been used for gene selection in microarray data by Li [16]. It measures the number of bits of information
obtained for class prediction by calculating the value for each feature (gene). The gene expression value is con-
tinuous-valued, and Information Gain requires that numeric features be discretized. We used the entropy-
based discretization method [7,9] implemented in Weka [27]. Let D be a data set of class-labeled samples.
There are two (Tumor, Normal) distinct classes, Ci (for i = 1,2). Let Ci,D be the set of samples of class Ci

in D. Let jDj and jCi,Dj denote the number of samples in D and Ci,D, respectively
InfoðDÞ ¼ �
X2

i¼1

pi log pi;
where pi is estimated by jCi,Dj/jDj. Gene A can be used to split D into v partitions, {D1,D2, . . . ,Dv}, where Dj

contains those samples in D that have outcome aj of A
InfoAðDÞ ¼
Xv

j¼1

jDjj
jDj � InfoðDjÞ:
Then, the Information Gain value for gene A is
GainðAÞ ¼ InfoðDÞ � InfoAðDÞ:
After computing these values for all of the genes, the genes that have high information gain values are selected
as informative genes.

The basic idea behind the Relief-F method is that each gene’s weight is calculated by finding the F closest
samples (half from the same class (hit) and others from another class (miss)) to each sample. If A is a selected
sample and G is a selected gene, the weight of the gene is increased, in the case of a hit, by the distance between
A and the hit sample. In contrast, the weight is decreased, in the case of a miss, by the distance between A and
the missed sample. After performing these computations and aggregations for all genes, the k-genes with the
highest weight are selected.

Park’s method [18] builds a binary sequence for a gene and uses Kendall’s correlation coefficient to calcu-
late a score that measures how differently the genes are expressed in the two class groups [1].

All of the methods mentioned above use the expression value of each gene as it is, without any consider-
ation regarding the integration of the microarray data.

2.3. Classification

The SVM [11,12,25] and the k-Nearest Neighbor [5] methods are more commonly used among numerous
classification approaches. The SVM is based on a machine learning algorithm that functions by learning linear
decision rules, which are represented by hyper planes. The SVM is not only used in microarray classification,
but is also used in other areas, such as regression analysis and density prediction. The SVM is complicated to
apply to microarray data because it experimentally needs various types of parameter adjustments. The k-Near-
est Neighbor (k-NN) [5] is an algorithm that classifies samples by selecting similar ones from the individual
training dataset of new samples. This k-NN algorithm has the weakness of not providing a good efficiency
when granting equal weights to all genes.

Some classification methods do not use parameters, but instead adopt a data-driven machine learning
approach that was proposed by Tan and called the k-TSP (Top Scoring Pair) [22] method. The TSP is an algo-
rithm that finds a pair of genes with the highest score. For each gene pair, Xi, Xj, the score is the difference of
the relative frequencies of occurrences when Xi < Xj in each class. The k-TSP classifier consists of k top-scoring
gene pairs that achieve the high score. Two drawbacks of the pair-gene rule are the possibility that the two
genes could be selected by chance alone and that a small alteration in the training datasets might change
the top scoring gene pair. The k-TSP method builds a classifier without the step of extracting the informative
genes. Since all of the genes in the microarray datasets are employed in the classification stage, this method is
computationally expensive as the microarray datasets are getting integrated.
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3. System overview

The system overview is shown in Fig. 3. In the first stage, the integration of independently generated micro-
array datasets is accomplished. Each independent microarray dataset has different probe sets and a distinct
variation in the scale of expression values. Only the genes common to all microarray datasets are extracted.
The expression value of each sample in each experiment is transformed into a rank value within a sample.
Once the expression values are changed to rank values, the integration of samples originating from different
experiments becomes feasible, as long as their gene order is the same. After integration, a score that measures
how differently a gene is expressed in the two class groups is calculated for each gene. At this stage, genes with
a very small score or a very large score are candidates for informative genes. In the second stage, a classifier is
built by using only the informative genes that were selected in stage 1.

As a first attempt to generalize the number of genes involved in a rule and to solve the drawbacks of the
pair-gene rule, we propose the k-GeneTriple method. For each set of three genes, Xi, Xj, Xk, one can establish
six (3!) magnitude relationships by comparing the rank values of the three genes. For each relationship, among
the samples with a class C1 label, the number of samples that satisfy the relationship is divided by the number
of C1 samples and then saved. Likewise, among the samples with a class C2 label, the number of samples that
satisfy the relationship is divided by the number of C2 samples and then saved. For every relationship, the
difference between these two values is calculated. A relationship with a higher difference score represents a
more discriminative classification rule. The classifier consists of top k classification rules. This parameter, k,
is determined by applying LOOCV (Leave One Out Cross Validation) to the training dataset. The LOOCV
method is an approach that uses all the samples except one sample in a microarray dataset, builds a classifier,
and measures the classifier’s accuracy by applying it to the single sample that was excluded. Each classification
rule consists of a set of three genes, the magnitude relationship among those three genes, and the prevalent
class label for the relationship. Given a new test sample, one can apply the classifier to the sample, predict
the class label of the test sample by a majority vote, and compare this predicted class with the real class of
the test sample.

4. System implementation

This section describes the details of the two-stage processing algorithm on the microarray data. In Section
4.1, the integration procedure of microarray datasets and informative gene selection algorithm are presented.
Fig. 3. Overview of our system.
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In Section 4.2, we present the k-GeneTriple classification method, which compares the magnitude relationship
among three genes, converts the relationship into a score, and builds a classifier which consists of k gene
triples.

4.1. Microarray data integration and informative gene selection

From among the microarray datasets that were generated independently but which had the same experi-
mental objectives (Fig. 4), only the genes common to all datasets were extracted (Fig. 5).

Even if the set of common genes has the same order in all of the microarray datasets, the scale of the expres-
sion values for each set of microarray data may be quite different because of different experimental conditions
or protocols. In these cases, a direct integration is inappropriate. Therefore, in order to make the direct inte-
gration possible, we used the rank of expression value for the corresponding gene within each sample rather
than using the actual expression values. Accordingly, as shown in Fig. 6, the expression values were all con-
verted into ranks within each sample. Our system uses the rank of expression value for the corresponding gene
within each sample, sorts the rank levels from the smallest to the largest for each gene along with the class
label of each sample (0 for normal, 1 for tumor), and calculates the score, which is the number of swaps
between neighboring 0 and 1 values. Table 1 shows an algorithm for identifying informative genes. To help
understand the algorithm, let us assume the microarray data is as presented in Table 2 below. By changing
this data into rank-based within each sample, we produce the values shown in Table 3. Then by sorting the
rank levels from the smallest to the largest for each gene along with the class label of the sample, we create
Fig. 4. Three of the independently generated microarray dataset for prostate cancer.

Fig. 5. Extraction of the set of common genes among microarray datasets.

Fig. 6. Microarray data expressed as ranks within each sample.



Table 1
Informative gene selection algorithm

Input NI (the number of informative genes), V[ ][ ] (expression values)

Output IG[ ][ ] (informative genes)

1 Generate a binary sequence S, which replaces normal samples with 0 and tumor samples with a value of 1
2 For all i, j, replace V[Gi][Sj], which represents an expression value, with R[Gi][Sj], which represents the order when they are

ranked according to expression values within each sample
3 Select an arbitrary gene Gi among genes that were not selected
4 For all j, sort R[Gi][Sj] in ascending order and generate a binary sequence, T, where normal samples are replaced with 0 and

tumor samples are replaced with 1
5 Using the scoring function defined as the number of swaps, calculate the scores for S and T, and insert the score for T into a

priority queue with size NI
6 Repeat step 3 until there are no unselected genes left
7 From the priority queue, select half of NI number of informative genes from the top (front), and half of NI number of

informative genes from the bottom (rear)

Table 2
Data presented in expression value

Normal Normal Normal Tumor Tumor Tumor

G1 13 32 3 24 13 42
G2 25 12 26 3 1 2
G3 23 6 2 102 59 13
G4 7 20 63 4 7 27

Table 3
Data presented in rank

Normal Normal Normal Tumor Tumor Tumor

G1 2 4 2 3 3 4
G2 4 2 3 1 1 1
G3 3 1 1 4 4 2
G4 1 3 4 2 2 3
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the data presented in Table 4. Finally, if we change the class label of a sample into binary sequence, the data
shown in Table 5 is produced.

After carrying out step 1 as outlined in Table 1, the initial binary sequence S becomes ‘‘000111’’, which is a
perfect splitting. When we run the function which calculates the score as the number of swaps of consecutive
Table 4
Data after sorting

N or T N or T N or T N or T N or T N or T

G1 2 (N) 2 (N) 3 (T) 3 (T) 4 (N) 4 (T)
G2 1 (T) 1 (T) 1 (T) 2 (N) 3 (N) 4 (N)
G3 1 (N) 1 (N) 2 (T) 3 (N) 4 (T) 4 (T)
G4 1 (N) 2 (T) 2 (T) 3 (N) 3 (T) 4 (T)

Table 5
Data expressed as binary sequence

G1 0 0 1 1 0 1
G2 1 1 1 0 0 0
G3 0 0 1 0 1 1
G4 0 1 1 0 1 1
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0s and 1s to arrive at S (perfect splitting) for each gene in Table 5, the gene with the smallest score is G3, with a
total of 1 time, and the gene with the largest score is G2 with a total of 9 times. This means that G2 and G3
have a strong possibility of becoming informative genes than G1 or G4.

4.2. k-GeneTriple classification method

In this paper we are attempting to generalize the number of genes involved in each rule, such that a classifier
has k-rules, where some of the rules involve two genes while others involve three or more genes, in order to
increase the robustness and the reliability of the classifier for tumor and normal sample class prediction. As the
first step, we propose the k-GeneTriple method.

In the k-GeneTriple method, the number of genes involved in a classification rule is limited to three. For
each set of three genes, we establish six magnitude relationships like R1, R2, R3, R4, R5, R6 in Table 7. For each
relationship, we calculate the score, which is the difference between the probability that the relationship occurs
in class 1 and the probability that the relationship occurs in class 2. The set of three genes satisfying the rela-
tionship with higher score is regarded as the more discriminative for classification. Each relationship also
keeps its class label by comparing the two probabilities and adopting the class that has more prevalent prob-
ability. We calculate the scores for all three gene sets and for all six magnitude relationships for each set. These
scores are placed into a priority queue in descending order. We take the k relationships that have the higher
score. Our classifier consists of k classification rules and each classification rule consists of (1) a set of three
genes, (2) the magnitude relationship among those three genes, and (3) the class label of the relationship. Table
6 shows an algorithm for the k-GeneTriple method.

In addition, the scoring function used in step 3 of Table 6 is as follows:
Pijk(1)
Table 6
k-GeneTr

Input

Output

1
2
3
4

5
6

Table 7
k-GeneTr

C1

C2

(Definitio
The probability that a relationship of Xi < Xj < Xk occurs in class 1 (Xi,Xj,Xk stand for the rank
values within a sample)
Dijk
 jPijk(1) � Pijk(2)j
For example, let us assume the dataset shown in Table 7. Here, when all of the corresponding values of D
are calculated, in the case of the R3 (Xj < Xi < Xk) relationship, one can see that
Djik ¼ jP jikð1Þ � P jikð2Þj ¼ j29=42� 1=33j � 0:66
iple classification algorithm

K (the number of rules specified), IS[ ][ ] (informative genes)

A set of K number of classification rules

From the informative gene set, select a set of three genes that were not processed before
Enumerate the magnitude relationships among the three genes for all samples
Calculate the score for each three gene combination using the scoring function
Insert the rule which is composed of the calculated score, the gene combination, the magnitude relationship, and the class
label of this gene combination into the priority queue with size K

Repeat step 1 if there are three gene combinations that have not been processed
Select the top K rules from the priority queue

iple example

R1 R2 R3 R4 R5 R6 Total

2 1 29 4 2 4 42
4 5 1 14 8 1 33

n of R) R1: Xi < Xj < Xk, R2: Xi < Xk < Xj, R3: Xj < Xi < Xk, R4: Xj < Xk < Xi, R5: Xk < Xi < Xj, R6: Xk < Xj < Xi.
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has the largest score. This means that if one observes the R3 relationship in a given test sample, then the sam-
ple class is predicted to be C1. Actually, we applied k number of decision rules to the test sample, and per-
formed majority voting to predict the class of the sample. The value of k is determined by LOOCV.

Majority voting is an ensemble approach [19] which combines the prediction (predicted class) of multiple
rules, and obtain the final prediction; in other words the classifier simply chooses the class receiving the most
votes. Our classifier consists of k decision rules. Let the each rule be ri. L(ri) is the class label of the rule ri.
Pri(S) is the predicted class when the sample S satisfies the decision rule ri. The value which Pri(s) can have
is either ‘‘Normal’’ or ‘‘Tumor’’. For ease of computation, the value of Pri(S) is converted into V(ri) whose
value is 1 when the value of Pri(S) is ‘‘Normal’’ and 0 when the value of Pri(S) is ‘‘Tumor’’. NC is the un-
weighted sum of the V(ri) for all i. If the value of NC is larger than the half of the number of rules (k/2), then
S is finally predicted to be a normal sample, otherwise the sample is predicted to be a tumor sample. Since we
fixed the number of rules to be an odd number, our system can break the tie and always return a predicted
class label. The majority voting process is described in short as follows:
Table
Prosta

Data

Singh
Welsh
LaTul
� ri is the ith rule � S is a test sample

� k is the number of rules � NC is the number of normal cell count

LðriÞ ¼ Class Label of the ri ðLðriÞ 2 fnormal; tumorgÞ

P riðSÞ ¼
LðriÞ if S satisfies the ri

LðriÞ Otherwise

�

V ðriÞ ¼
1 if P riðSÞ is a Normal Sample

0 Otherwise

�

NC ¼
Pk
i¼1

V ðriÞ
5. Experimental results

In this section, we describe the experiments we performed to verify the accuracy and efficiency of the two-
stage method. We used publicly available prostate cancer microarray data. The platform of these data was the
Affymetrix HG_95AV2. For convenience, we represent each dataset as an abbreviation of the first author of
the published papers by Singh [21], Welsh [26] and LaTulippe [14]. Table 8 shows the information about the
microarray datasets that were used in our experiment. Section 5.3.2 describes the accuracy of the classification
using colon cancer microarray data of which platform is cDNA.

5.1. Determining the optimal number of rules (k) by LOOCV

In this subsection, we describe the experiment that determined the optimal number of rules which is the
value of k, by LOOCV. We varied the value of k and chose the k value that gave the highest LOOCV accuracy
in each dataset. Since most of the previously proposed gene ranking methods typically select 50–200 top-
ranked genes [8,15], we fixed the number of informative genes as 126, 1% of 12600 genes that is the number
of common genes in the microarray data. In order to break ties in the majority voting procedure, we imposed a
restriction that k does not exceed 10 and is an odd number in LOOCV experiments. Table 9 shows the sum-
mary of the optimal k value obtained from the experiments in each training dataset. We measured accuracy,
8
te microarray data

Number of probes Number of normal samples Number of tumor samples Total number of samples

12600 50 52 102
12626 9 24 33

ippe 12626 3 23 26



Table 9
The optimal k values

Training dataset Optimal k

Singh 9
LaTulippe 5
Welsh 5
Singh + Welsh 9
Singh + LaTulippe 7
Welsh + LaTulippe 5
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sensitivity, and specificity in order to compare our system’s performance with others’ performance. These mea-
sures were defined as follows:
Accuracy ¼ The Number of Correctly Predicted Samples

The Number of Total Samples
;

Sensitivity ¼ The Number of Correctly Predicted Tumor Samples

The Number of Tumor Samples
;

Specificity ¼ The Number of Correctly Predicted Normal Samples

The Number of Normal Samples
:

In this experiment, the number of rules was restricted to no less than 5. If the number of rules is too small,
the rules cannot guarantee credibility as a classifier. Moreover, independent test data may not contain the
genes involved in the classifier.

5.2. Accuracy of the informative gene selection method

In this subsection, we describe the accuracy test of the proposed informative gene identification method. We
compared our gene selection method with the Information Gain and Relief-F methods, which are popular fea-
ture filtering methods. Since these two methods cannot be directly applied to integrated data, we normalized
all of the data by applying a Z-score, which is a classic, but the most generalized normalization method. After
selecting the informative genes by individually using our proposed method, the Information Gain method, and
the Relief-F method, we compared the accuracy of those three gene identification methods by applying a clas-
sification method. For the classification method, we used the linear support vector machine (SVM). The size of
the informative gene is 1% of the original genes.

Figs. 7–9 present the accuracy of each of the independent Singh, Welsh, and LaTulippe datasets individu-
ally. We used one dataset as independent test data and used the other two datasets as training data. When
using Singh as the independent test data, the training datasets were Welsh, LaTulippe, and Welsh + LaTu-
lippe. We built a classifier from each training dataset and applied the classifier to Singh and measured the
accuracy. The experimental accuracy results for Singh were compared among different training datasets.
We also compared the accuracy of the experimental results for Singh among three different gene selection
methods: (1) our proposed gene selection method + SVM, (2) Relief-F + SVM, and (3) Information
Gain + SVM.

The classification accuracy on independent test data confirmed that the proposed informative gene identi-
fication method has a comparable or better performance than the Information Gain and Relief-F methods
when integrated dataset of Singh and LaTulippe were used as the test dataset. In addition, the classification
accuracy of our method increased as the sample size in the training datasets is increased by data integration.

5.3. Accuracy of the classification method

In this section, we tested the accuracy of our classification method (k-GeneTriple) using the optimal k that
was acquired from Section 5.1. We compared our system with other two methods: (1) k-TSP, (2) Information
Gain + SVM. The Relief-F method was excluded in this experiment because it showed a worse accuracy than



Fig. 7. Accuracy when Singh was used as test data.

Fig. 8. Accuracy when Welsh was used as test data.
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the Information Gain method overall as proved in Section 5.2. Section 5.3.1 presents the accuracy analysis
using Affymetrix prostate cancer microarray data, and Section 5.3.2 presents the accuracy analysis using
cDNA colon cancer microarray data.

5.3.1. Accuracy of the classification method using Affymetrix data

As shown in Figs. 10–12, we built a classifier using a training dataset, which consists of all possible data
combinations, excluding the test dataset, and measured the accuracy of each independent test dataset. Table
10 shows the values of optimal k used in our experiments.

As seen in the above figures, the experimental results of our system did not always perform better than
other systems when the training dataset is a single microarray dataset. However, this decrease in performance
is partly due to the small sample size in the single microarray dataset. In particular, both the Welsh and



Fig. 9. Accuracy when LaTulippe was used as test data.

Fig. 10. Accuracy when Singh was used as test data.
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LaTulippe datasets had skewed samples with a much smaller number of normal samples than tumor samples.
Therefore, these datasets cannot be used as training datasets alone. However, as integration significantly
increases the sample size, our system performed with a much better accuracy than the k-TSP and SVM meth-
ods. Based on these experiments, the proposed two-stage approach can produce more credible classifiers than
other systems, especially when data are comprehensively integrated.

5.3.2. Accuracy of the classification method using cDNA microarray

The microarray data we used for this experiment was a colon cancer study from the Cancer Metastasis
Research Center of Yonsei University [28]. The platform of these data was cDNA. Details about these data
are given in Table 11. The two microarray batches were made with time delays, an A batch and a B batch. The
gene sets in these two batches were the same. ‘‘Paired’’ means that one normal tissue sample and one tumor



Fig. 11. Accuracy when Welsh was used as test data.

Fig. 12. Accuracy when LaTulippe was used as test data.

Table 10
The values of optimal k used in our experiments

Test dataset Training dataset k-GeneTriple k-TSP

Singh Welsh 5 3
LaTulippe 5 3
Welsh + LaTulippe 5 1

Welsh Singh 9 1
LaTulippe 5 3
Singh + LaTulippe 7 5

LaTulippe Singh 9 1
Welsh 5 3
Singh + Welsh 9 9
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Table 11
Colon cancer cDNA microarray data

Data name Number of
genes

Number of
normal samples

Number of
tumor samples

Total number
of samples

Characteristics

A_batch_Paired 17104 131 131 262 A batch, Paired, Used
as Training Data

A_batch_Unpaired 17104 0 86 86 A batch, Unpaired, Used as
Training and Test Data

B_batch_Unpaired 17104 0 211 211 B batch, Unpaired, Used as
Training and Test Data
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tissue sample were collected from the same origin (person), while ‘‘Unpaired’’ means that an individual tumor
sample was collected from one person. The data was preprocessed with non-missing proportion (Non-Missing
Proportion) of 100%.

As the previous subsection, we compared our system with other two methods: (1) k-TSP, (2) Information
Gain + SVM. Table 12 shows the values of optimal k used in this experiments as a result of LOOCV run. As
shown in Figs. 13 and 14, we built a classifier using a training dataset, which consists of all possible data com-
binations, excluding the test dataset, and measured the classification accuracies for each independent test data.

The classification accuracy rates for both A_batch_Unpaired and B_batch_Unpaired were similar and
excellent as shown in Figs. 13 and 14. Using a rank value within a sample instead of an expression value took
effect in eliminating variations between batches. Like Affymetrix data, the classification accuracy was higher as
the sample size was larger by integration. The proposed two-stage approach can produce more credible clas-
sifiers than other two methods, especially when the data are integrated.
Table 12
The values of optimal k used in our experiments

Test data Training data k-GeneTriple k-TSP

A_batch_Unpaired A_batch_Paired 7 1
A_batch_Paired + B_batch_Unpaired 7 9

B_batch_Unpaired A_batch_Paired 7 1
A_batch_Paired + A_batch_Unpaired 7 5

Fig. 13. Accuracy when A_batch_Unpaired was used as test data.



Fig. 14. Accuracy when B_batch_Unpaired was used as test data.
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Since the test data does not include normal samples, the accuracy rate is same as the sensitivity, and spec-
ificity is not applicable.
5.4. Run-time comparison of k-GeneTriple and TSP

We compared time-complexity of k-GeneTriple and TSP in Table 13. In k-GeneTriple, the number of genes
involved in classification stage is reduced by informative gene selection stage which selects 1% of informative
genes out of original genes. Informative gene selection stage takes order of linearithmic time. The number of
rules considered in classification stage is n*0.01P3 which is (n * 10�2) * (n * 10�2 � 1) * (n * 10�2 � 2) when the
number of original genes is n. Since the number of informative genes is usually in the range of 50–200, it can be
said that time complexity of classification stage of k-GeneTriple is O(1).

We made a run-time comparison of k-GeneTriple, and TSP. Table 14 presents the run-time for the Affyme-
trix datasets, and Table 15 presents the run-time for cDNA datasets. Experiments were conducted on a
Pentium(R) 4 CPU 3.00 GHz PC with 1.00 GB RAM. For TSP we used the executables Tan [22] provides.
Comparison of run-time reveals that k-GeneTriple runs 3.36 times faster than TSP at best, and runs 1.05 times
Table 13
Time complexity comparison of k-GeneTriple and TSP

Stage k-GeneTriple TSP

Time complexity Comments Time
complexity

Comments

Informative gene
selection stage

O(p * n logn + n * p logp + n * p) =
O(np lognp)

n: number of genes, in tens of thousands None
p: number of samples, in hundreds
p * (n logn): p * (sorting a sample with n genes)
n * (p logp): n * (sorting a gene across p samples)
n * p: n * (swap number counting for a gene)

Classification
stage

O(C * n3) n*0.01P3: number of rules considered O(n2) nP2: number of
rules consideredOnly select 1% of informative genes

C: 10�6

Total O(np lognp) + O(C * n3) C: 10�6 O(n2)



Table 14
Run-time comparison of k-GeneTriple and TSP for Affymetrix datasets in seconds

Test dataset Training datasets k-GeneTriple TSP

Informative gene selection Classification Total

Singh Welsh 3.422 156.641 160.063 242.156
Latulippe 2.765 133.891 136.656 459.422
Welsh + Latulippe 6.203 287.578 293.781 318.703

Welsh Singh 9.516 442.469 451.985 511.218
Latulippe 2.828 134.093 136.921 459.015
Singh + Latulippe 11.953 561.75 573.703 614.797

Latulippe Singh 9.656 442.171 451.827 510.515
Welsh 3.672 156.75 160.422 241.047
Singh + Welsh 12.937 584.703 597.64 628.968

Table 15
Run-time comparison of k-GeneTriple and TSP for cDNA datasets in seconds

Test dataset Training datasets k-GeneTriple TSP

Informative gene selection Classification Total

A_batch_Unpaired A_batch_Paired 16.313 332.11 348.423 510.641
A_batch_Paired + B_batch_Unpaired 27.641 518.141 545.782 829.297

B_batch_Unpaired A_batch_Paired 16.563 332.016 348.579 512
A_batch_Paired + A_batch_Unpaired 20.438 379.047 399.485 594.031
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faster than TSP at worst for Affymetrix datasets. For cDNA datasets k-GeneTriple runs 1.51 times faster than
TSP at best, and runs 1.46 times faster than TSP at worst.

5.5. Effectiveness of the rank-based microarray data integration in classification

One of the problems in microarray data classification is that the number of genes far exceeds the number of
tissue samples. We performed a direct integration of individual microarrays with same biological objectives by
converting an expression value into a rank value within a sample, and applied a classification method with
100% of the original genes. We made all the rank-valued genes participate in building a classifier. What we
want to demonstrate in this section is that bigger sample size by rank-based direct-integration with 100%
of the original genes increases the classification accuracy when the typical classification method like SVM
is used. SVM is the most common method for classification. We are able to show that the classification accu-
racy of an independent test dataset is getting higher as the sample size of the training dataset is bigger. A train-
ing dataset can be a single rank-valued microarray dataset or an integrated rank-valued microarray dataset.
Table 16
Classification accuracy of rank-valued Affymetrix test datasets using SVM

Rank-valued test dataset Ranked-valued training datasets Accuracy Sample size

Singh Latulippe 56.86 26
Welsh 80.39 33
Latulippe + Welsh 83.33 59

Welsh Latulippe 75.76 26
Singh 100 102
Latulippe + Singh 100 128

Latulippe Welsh 100 33
Singh 100 102
Welsh + Singh 100 135



Table 17
Classification accuracy of rank-valued cDNA test datasets using SVM

Rank-valued test dataset Ranked-valued training datasets Accuracy Sample size

A_batch_Unpaired A_batch_Paired 93.02 262
A_batch_Paired + B_batch_Unpaired 95.35 473

B_batch_Unpaired A_batch_Paired 91 262
A_batch_Paired + A_batch_Unpaired 93.84 348
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This rank-based direct integration method has an effect of enlarging the number of samples, and increasing the
accuracy rate of the classification. Tables 16 and 17 show that the classification accuracy of rank-valued test
dataset using rank-valued training datasets which consist of all possible data combinations, excluding the test
dataset. One can see that the accuracy is getting higher as the sample size is bigger by integration. This rank-
based direct integration with SVM is an effective method in microarray data classification. We were able to
maximally use the abundant microarray data that is being stockpiled by the thousands of different research
groups while improving classification accuracy.

6. Conclusion

In this paper, we introduce a novel two-stage approach for phenotype classification that sequentially com-
bines independent microarray dataset integration, informative gene selection, and classifier building. Using the
abundant supply of publicly available microarray data, we utilized a new method of integrating indepen-
dently-generated microarray data with the same experimental objectives to select informative genes. We have
discovered a more reliable classifier by increasing sample size through integrating independent microarray
datasets. Moreover, two-stage approach made the computation time of the second stage tremendously lessen
because only the pre-selected informative genes were considered. Since the number of genes involved in our
classifier is relatively small, focusing on these genes could be very cost-effective in a clinical setting while micro-
arrays with thousands of genes are impractical. Furthermore, our classifier has a straightforward biological
interpretation. A prototype was implemented and tested on integrated prostate microarray datasets and colon
cDNA microarray datasets. Our experiments show that our informative gene selection method is better than
or comparable to other methods. Compared to the Information Gain plus the SVM method, our system had
better classification accuracy with independent test datasets as the sample size of the training dataset grew lar-
ger by integration. We are currently investigating (1) cross platform validation where cDNA and Affymetrix
data are included in the integrated microarray data, (2) elimination of redundancy among informative genes,
and (3) generalization of the number of rules in the classifier and the number of genes involved in each rule.
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