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Abstract

Background: The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to
the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer
recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning
can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal
the detailed roles of identified cancer genes in recurrence.

Results: In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph
regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and
integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we
predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled
and unlabeled nodes.

Conclusions: The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing
supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We
identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our
algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The
executable program is freely available at: http://embio.yonsei.ac.kr/̃Park/ssl.php.
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Introduction

Identifying cancer biomarkers for diagnosis and prognosis is one

of the most important research fields in bioinformatics. The use of

accurate cancer biomarkers can help to determine the appropriate

therapy based on patient status. These biomarkers can be

presented as a list of genes or gene network structure. Microarray

based gene expression has been used to identify these biomarkers

[1,2,3]. In addition, several recent studies have used not only gene

expression data, but also interactome data to enhance the

predictive performance. Known cancer related genes are not

distinguishable by gene expression level alone. Chuang et al.

demonstrated that the integration of interactome and transcrip-

tome data was useful for the identification of coexpressed

functional sub-networks, and the interactions of the sub-networks

acted as a marker with higher classification accuracy [4]. Taylor

et al. analyzed global modularity in protein interaction networks

and revealed that the intermodular hub, one of two types of hubs,

was more frequently associated with oncogenesis [5]. Ahn et al.

proposed a novel and accurate classification method using

integration of both interactome and transcriptome data [6]. They

also constructed cancer-specific gene networks derived from their

classification method and revealed that cancer-related genes in a

network play an important role in cancer [6].

Although gene expression and interactome data are very useful

for cancer research, the relatively small number of samples

compared to the number of genes leads to challenges in analysis

[7]. The reliability of discovering genes differentially expressed in

two different conditions is decreased by small sample sizes. There

have been attempts to overcome this limitation of microarray-

based gene expression data [8]. Shi et al. mentioned that obtaining

microarray data with clinical follow-up information is time

consuming, expensive, and limited by sample availability [9].

These findings imply that the existing supervised-learning-based

approaches that only use labeled data still have limitations.

One approach to supplementing the small quantities of labeled

data is semi-supervised learning, which is a combination of super-

vised and unsupervised methods. Semi-supervised learning com-

bines labeled and unlabeled data to construct a learning model

with improved accuracy [10]. Generally, semi-supervised classifi-

cation is used when there are more unlabeled data than labeled

data. In such a case, it is thought that the knowledge of the

unlabeled data will be useful in the inference of accurate

classification rules during the learning process.

Recently, semi-supervised learning based approaches have been

widely applied to biological data analysis including genetic

interactions. You et al. developed a graph-based semi-supervised
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learning classifier that can predict pairwise synthetic genetic

interactions [11]. Because genetic interaction profiles can help

create a better understanding of the linkages between genes and

functional pathways, an accurate algorithm to predict genetic

interactions is highly desirable despite the lack of a high precision

functional gene network. Semi-supervised learning approaches

have also been applied to prognosis related studies. Nguyen et al.

proposed a semi-supervised learning based method to predict

genes involved in disease by inferring both disease genes and their

neighbors through protein interaction networks [12]. Bair et al.

proposed using both available clinical data and gene expression

data to identify the subset of the genes used to perform semi-

supervised clustering [13]. Their method was used to reveal

subtypes of cancer and predict patient survival. Joshua Smith et al.

used gene expression profiles to identify a gene classifier associated

with a high risk of metastasis and death from colon cancer [14].

As mentioned above, semi-supervised approaches can supple-

ment the limitations of gene expression data analysis, such as lack

of an assigned clinical class for each patient. Shi et al. proposed a

semi-supervised classifier based on low density separation that can

identify high-risk and low-risk patients [9]. That study, which used

labeled and unlabeled gene expression samples, showed enhanced

accuracy compared with existing approaches based on supervised

learning. However, there has not been an attempt to apply both

semi-supervised learning and the integration of interactome and

transcriptome data to overcome the small number of labeled

samples and to improve the performance of classification and

prediction. The integration of heterogeneous data can help to

distinguish more significant genes from the gene expression data

used to build classifiers, as mentioned above.

In this article, we used graph regularization and integration of

transcriptome and interactome data to build a novel semi-

supervised learning-based classifier for human cancer, and

constructed a cancer-specific gene network. The graph regulari-

zation is based on the ‘manifold assumption,’ where the

construction of graph models is an important phase. In design of

the graph model for classification, we constructed the graph using

labeled and unlabeled samples as nodes. The connection between

two samples was calculated using the selected informative gene

pairs. In selecting useful gene pairs, we integrated Protein-Protein

Interaction (PPI) data with gene expression data. PPI data

provided information about the functional relationship among

proteins and was applied to genes connected by PPIs. After

selecting gene pairs, we applied a scoring scheme proposed in a

previous paper [6]. We focused on breast, colorectal, and prostate

cancers to predict cancer relapse. Three cancer patients’ mRNA

expression data included both unlabeled and labeled samples.

We demonstrated that (i) the proposed semi-supervised learning

based classification enhanced prediction performance compared

with existing methods, including TSVM, which is a semi-

supervised learning version of SVM, (ii) the proposed method

was applicable to different cancers, (iii) the proposed method was

robust regardless of the class label ratio and (iv) the cancer-specific

gene network derived from the classifier was biologically

meaningful, and the cancer-specific genes of this network played

a role as members of complex biological processes.

Methods

To build a semi-supervised learning classifier, we first integrated

gene expression data with PPI and identified informative gene

pairs with the labeled samples. Second, we constructed a sample

based graph model using selected informative genes in order to

build a classifier.

Data Description
We downloaded the gene expression datasets of three cancers

from the Gene Expression Omnibus (GEO) database. Table 1

summarizes the detailed specification of the datasets. The gene

expression dataset GSE2990 was composed of 125 invasive breast

cancer samples classified into two groups, high and low risk of

recurrence; 64 samples did not have a class label. The gene

expression dataset GSE17536 was composed of 177 colorectal

cancer patients. Samples were classified into three groups:

‘recurrence,’ ‘no recurrence,’ and ‘unlabeled.’ Based on observa-

tion of recurrence within five years of follow-up, the labels were

assigned to samples. The unlabeled samples had no clinical follow-

up data. The gene expression dataset GSE17538 was composed of

213 colon cancer samples, which were also classified into the three

groups mentioned above. A more detailed description of the

datasets according to the experimental platform is shown in Table

S2 in File S1.

We also downloaded 194,988 human PPIs from the I2D

database, which included known, experimental, and predicted

PPIs. Because the proteins in these PPIs were mapped into gene

symbols using Universal Protein Resource (UniPROT), we

obtained 108,544 PPIs after removing duplicated PPIs and PPIs

that contained proteins that were not mapped to a gene symbol.

System Overview
This section describes a novel graph-based semi-supervised

learning algorithm for cancer prognosis. The graph consists of

nodes and edges corresponding to samples and interactions

between two samples, respectively. The graph is constructed with

both labeled and unlabeled samples of gene expression data, and

the unlabeled samples were subsequently labeled based on the

geometry of the graph structure. Therefore, it is very important to

generate a sample-based graph from the given dataset. We

propose a novel graph construction method that is specialized for a

microarray dataset. Based on this graph construction method, we

developed a semi-supervised learning algorithm that uses graph

regularization.

In this approach, the graph itself is a classifier. Thus, the

parameters for constructing the graph imply that they are the key

factors of the classifier. The classification results are dependent on

the parameters. Semi-supervised learning generally utilizes the

feature or underlying information of unlabeled data. This

approach assumes that unlabeled data is able to enhance the

classification performance. According to this distinguishing feature

of semi-supervised learning, we take advantage of unlabeled data

for building a classifier.

The proposed method has two phases. The first phase is to

determine the candidate optimal parameters for graph regulari-

zation varying the parameter ranges in k-fold cross validation.

After this phase, we construct the graph with both labeled and

unlabeled samples. Then, we identify whether the classification

results from graph regularization are changed or converged. If

they are changed, we regard the classified unlabeled data as newly

labeled data and use them to determine the optimal candidate

parameters. In this iterative process, the information of unlabeled

samples is provided. The previous semi-supervised learning

method proposed in [9] also used unlabeled samples to build a

classifier based on Low Density Separation (LDS). Figure 1 shows

the entire workflow including the semi-supervised learning module

for determining the optimal parameters of our method.

The details of the semi-supervised learning module in this

workflow are described in the following sections. This module

consists of the following three core steps: (1) identification of

informative gene pairs, (2) construction of sample graphs with

Analysis of Cancer Recurrence by Using Network
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selected genes, and (3) regularization of the graph and prediction

of the labels of the unlabeled samples. The workflow of the semi-

supervised learning module is shown in Figure 2.

Identification of Informative Gene Pairs
There are tens of thousands of genes in microarray datasets, and

only some of them are specific to the classification of the sample.

Informative gene pairs indicate interactions that are diacritical in

the two contrary classes of labeled samples. We adopted and

modified our previously proposed scheme for identifying interac-

tions in the gene expression dataset [6]. In that study, we

demonstrated that the intensity of some interactions can be

different between normal cells and tumor cells. We also elucidated

that changes in the interaction level could be the cause or effect of

tumorigenesis, and that the modification of protein complexes

could affect various interactions as a result of tumorigenesis.

Table 1. Datasets used throughout the manuscript.

Cancer type GEO assess number No. of labeled samples1
No. of unlabeled
samples

No. of genes after
filtering

Breast GSE2990 125 (76: 21, 49: +1) 64 13,046

Colorectal GSE17536 145 (109: 21, 36: +1) 32 13,046

Colon GSE17538 181 (132: 21, 49: +1) 32 13,046

Breast GSE4922 249 (160: 21, 89: +1) 0 13,046

Colorectal GSE18105 111 (67: 21, 44: +1) 0 13,046

Name Description Quantity Reference

Protein-Protein Interaction Human PPI 108,544(mapped to a gene symbol) I2D database

21: non-recurrence, +1: recurrence.
doi:10.1371/journal.pone.0086309.t001

Figure 1. Detailed workflow to determine the optimal parameter set. First, we construct a graph for regularization with only labeled samples
by varying two parameters. In this phase, we use k-fold cross validation to determine the optimal parameter set. We then apply semi-supervised
learning with the obtained optimal parameter set and predict the labels of the unknown samples. The proposed method uses unlabeled sample
information to build a classifier by iterating the procedure.
doi:10.1371/journal.pone.0086309.g001
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The measurement of changes in interactions can be regarded as

identification of the degree of dependency between two genes. A

large correlation value between two genes as a degree of change

indicates that there is strong dependency between the two genes.

Based on this rationale, we propose a scoring scheme to calculate

the strength of the connection between two genes that are

connected by PPIs. Using this measure, we can facilitate the

selection of informative interactions from gene expression datasets,

since the cancer specific network was constructed based on a

similar scoring function. In other words, we can choose the

interactions specified for tumor recurrence using the proposed

scoring scheme. The score of two genes is calculated by the

following equation:

Score(gi,gj)~DPCC(giC1,gjC1){PCC(giC2,gjC2)Dwthresholdg

where giC1 and giC2 are vectors of the mRNA expression value of

gene i on class 1 and class 2 samples, respectively, and gjC1 and gjC2

are vectors of the mRNA expression value of gene j on class 1 and

class 2 samples. Only the gene pairs with a scoring value greater

than thresholdg are regarded as being significantly different between

two classes. This scoring scheme is performed only with the

labeled samples in the gene expression dataset. A simple example

of calculating Score values is shown in Figure S1 in File S1.

Construction of the Sample-based Graph
We constructed a sample-based graph for regularization. The

weight of a sample pair is calculated by the Pearson Correlation

Coefficient (PCC) between two sample vectors that are composed

of the genes as elements, where the genes are obtained from

informative gene pairs. Both labeled and unlabeled samples are

used in the graph. The weight function is as follows:

Weight(Si,Sj)~DPCC(S�i ,S�j )wthresholdsD

where S*
i and S*

j are vectors of the mRNA expression value of

sample i and sample j, respectively, of the selected gene pairs with

values larger than thresholds. We assume that there is a significant

relationship between two samples when they are highly associated

with each other with a positive or negative pattern. We can

transform the gene expression dataset into a graph structure that

can be regularized. A simple example of calculation of the Weight

value is shown in Figure S1 in File S1.

Figure 2. Detailed workflow of the proposed semi-supervised learning algorithm. We apply a graph regularization approach for semi-
supervised learning, and the purpose of the proposed method is to predict the labels of unlabeled samples.
doi:10.1371/journal.pone.0086309.g002
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Regularization of the Graph
Based on the sample-based graph structure derived from the

method mentioned above, labels are assigned to the unlabeled

nodes. To achieve this, we employ a basic regularization

approach. For the regularization of the graph, we estimate a

regularization framework based on the manifold assumptions. The

cost function for regularization is as follows:

min
y[(0,1)n

Xl

i~1

(ŷyi{yi)
2z

1

2

Xn

i,j~1

Wij(ŷyi{ŷyj)
2

( )

where y and y^ respectively indicate the initial labels and the

estimated labels for both labeled and unlabeled data. Wij indicates

the weight between node i and node j. The total number of both

labeled and unlabeled nodes is n, and the number of labeled nodes

is l. In our problem, y indicates labeled and unlabeled samples of

the cancer dataset, and Wij is obtained using the weight function

defined in the above chapter. Using the cost function, we measure

the consistency with the initial labeling using the first term, and we

assign a penalty for regularization using the second term. Using

the second term, we calculate the weighted difference between two

nodes without consideration of whether or not they are labeled.

The major purpose of this cost function is to minimize the

weighted difference among all nodes. This process refers to

regularization and is equivalent to the label propagation

algorithm. In our case, it is unnecessary to reassign labels to the

labeled data because they have already been clinically verified.

Therefore, in the first term of the cost function, y^i is constrained to

be equal to yi. As a result, the cost function can be transformed into

the following function with a graph Laplacian.

min
y[(0,1)n

1

2

Xn

i,j~1

Wij(ŷyi{ŷyj)
2

( )

~ min
y[(0,1)n

1

2
2
Xn

i~1

ŷy2
i

Xn

j~1

Wij{2
Xn

i,j~1

Wijŷyiŷyj

 !

~ min
y[(0,1)n

ŷyT (D{W )ŷy

~ min
y[(0,1)n

ŷyT Lŷy

where L is the un-normalized graph Laplacian and D is a diagonal

matrix of weight matrix W. This function penalizes rapid label

changes in y^ between two close data points according to the given

weight matrix. Various approximations have been proposed to

minimize this function over y^u, where y^u indicates the estimated

label for unlabeled data and y^l indicates the labeled data.

Minimizing the function with respect to y^u converts it into the

following function.

ŷyu~{L{1
uu Lul ŷyl

We predict the labels for the unlabeled data using this

calculation. Since we do not focus on development of novel

semi-supervised learning algorithm, we employ a general regular-

Figure 3. Experimental results of parameter testing. We
performed 100 different experiments while changing two threshold
values and obtained 100 average accuracies for each dataset using 10-
fold cross validation. We found the maximum, minimum, and average
accuracies for each dataset in two cases. (1) We carried out 10-fold cross
validation over 100 times, varying the two thresholds of the original
samples as shown in Table 1. (2) We also carried out 10-fold cross
validation over 100 times, varying the two thresholds after balancing
the number of samples in the two classes. We randomly removed
samples 27, 73, and 83 from the non-recurrence groups GSE2990,
GSE17536, and GSE17538, respectively.
doi:10.1371/journal.pone.0086309.g003

Table 2. Optimal combination of two thresholds for each dataset in 10-fold cross validation.

Cross
validation Group

Dataset (# of samples
for each class)

Optimal thresholdg

value
Optimal thresholds

value Best accuracy Sen. Spec.

K = 10 Original GSE2990 (76: 21, 49: +1, 64: U) 0.20 0.72 0.725 0.617 0.795

GSE17536 (109: 21, 36: +1, 32: U) 0.15 0.86 0.807 0.485 0.906

GSE17538 (132: 21, 49: +1, 32: U) 0.20 0.72 0.756 0.163 0.977

Adjusted GSE2990 (49: 21, 49: +1, 64: U) 0.45 0.76 0.767 0.721 0.809

GSE17536 (36: 21, 36: +1, 32: U) 0.15 0.84 0.786 0.882 0.694

GSE17538 (49: 21, 49: +1, 32: U) 0.35 0.90 0.767 0.756 0.778

Sen. = Sensitivity, Spec. = Specificity.
doi:10.1371/journal.pone.0086309.t002
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ization approach for the weighted sample graph, and it is sufficient

to apply the general approach to our problem.

Results

We performed experiments to obtain the optimal combination

of two thresholds for the score of a gene pair and the weight of the

sample based graph. We then compared our method with several

existing methods in order to assess its performance. Finally, we

analyzed the network derived from our method with the known

cancer related gene list.

Obtaining the Optimal Parameters
We used two parameters to both identify informative gene pairs

and assign weights to sample pairs. To find optimal combinations

of these two parameters, we measured the accuracy of the

proposed classification model using k-fold cross validation by

varying these two parameters. We changed the thresholdg value

from 0.15 to 0.6 in intervals of 0.05 and the thresholds value from

0.72 to 0.9 in intervals of 0.02. Overall, we performed 100

different experiments, varying these two thresholds and measuring

the accuracy of each experiment by averaging the k accuracies

generated during k-fold cross validation. Figure S2 in File S1

depicts the workflow of the evaluation of our method. To measure

the accuracy of the semi-supervised learning method, we only used

labeled samples and assumed that some of the samples were

unlabeled. Using these two groups of labeled and unlabeled

samples, we constructed the graph and performed regularization.

To determine the classification of unlabeled samples, we applied

a heuristic method called Class Mass Normalization (CMN)

proposed by [15]. In general, the decision rule assigns label 1 to

node i if the calculated value after regularization is greater than

0.5, and label 0 otherwise. However, this decision approach is only

effective when the classes are well separated. Since gene expression

data do not always have the same number of samples for each

class, we adopted CMN to identify the final class label. CMN

adjusts the criterion for determining the class label according to

the ratio of the mass of classes.

The experimental results obtained from varying parameters are

shown in Figure 3. We performed 100 different experiments,

varying the two threshold values for each dataset. For each

experiment, we performed k-fold cross validation and averaged the

k accuracies. The purpose of this process was to compare the

accuracy of classification on 100 different experiments. We also

carried out the same experiments with an adjusted dataset, which

had the same number of samples for both recurrence and non-

recurrence groups since different proportions of class labels can

affect the performance of the classifier. Our method uses semi-

supervised learning-based graph regularization, which is influ-

enced by the geometric structure of the graph, to classify the label.

If the relative ratios of two classes differ considerably, the labels of

a small number of samples may not be propagated through the

graph. This can affect classification performance. All of the chosen

cancer datasets were divided into original and adjusted sample

groups. In the remainder of this article, we describe an experiment

conducted with these two groups. We obtained two optimal

threshold values at maximal accuracy for each dataset, as shown in

Figure 3. We also found the optimal thresholds while changing the

k value of cross validation. The experimental results of k = 5 and

k = 20 are described in Table S5 in File S1. The experimental

results are shown in Table 2. To show an effectiveness of unlabeled

data, we also performed out the experiments varying the number

of unlabeled samples. The experimental result substantiated that

the accuracy was improved according to increasing of the number

of unlabeled samples. This experimental result is shown in table S6

in File S1.

Comparison with Existing Methods
We compared the proposed method with three typical

supervised classification algorithms implemented in Weka 3.6.8,

namely Support Vector Machine (SVM) [16], Naı̈ve Bayesian

[17], and Random Forest [18]. In addition, we also compared our

method with TSVM, which is a semi-supervised learning version

of SVM and was implemented in SVM-light.

We compared the accuracies, including the sensitivities and

specificities, of the proposed method and other methods using 10-

Table 3. Predicting performance comparison of the proposed method with four existing methods using PPI data to identify
informative genes.

Cancer type (GSE
No.) Data description Proposed method TSVM SVM Naı̈ve Bayesian Random Forest

Original Accuracy (Sensitivity/Specificity)

Breast (GSE2990) L:125(21:76, +1:49) U:64 0.725 (0.617/0.795) 0.543 (2/2) 0.528 (0.671/0.306) 0.592 (0.605/0.571) 0.664 (0.921/0.265)

Colorectal (GSE17536) L:145(21:109, +1:36) U:32 0.807 (0.485/0.906) 0.752 (2/2) 0.772 (0.889/0.389) 0759 (0.844/0.500) 0.752 (0.963/0.111)

Colon (GSE17538) L:181(21:132, +1:49) U:32 0.756 (0.163/0.977) 0.728 (2/2) 0.796 (0.917/0.469) 0.707 (0.826/0.388) 0.713 (0.955/0.061)

Adjusted Accuracy (Sensitivity/Specificity)

Breast (GSE2990) L:98(21:49, +1:49) U:64 0.767 (0.721/0.809) 0.499 (2/2) 0.510 (0.495/0.525) 0.576 (0.574/0.565) 0.522 (0.418/0.627)

Colorectal (GSE17536) L:72(21:36, +1:36) U:32 0.786 (0.882/0.694) 0.499 (2/2) 0.630 (0.672/0.587) 0.640 (0.628/0.652) 0.597 (0.550/0.644)

Colon (GSE17538) L:98(21:49, +1:49) U:32 0.767 (0.756/0.778) 0.498 (2/2) 0.635 (0.657/0.614) 0.592 (0.465/0.718) 0.572 (0.486/0.663)

For each experiment, the optimal combination of two thresholds was obtained using the approach mentioned above and was applied to an independent test using
unlabeled samples. Bold font indicates the superior performer.
TSVM: P (the ratio of two class labels).
SVM: PolyKernel –C 250007–E 1.0, The complexity parameter C (1.0), epsilon (1.0E212), filterType (Normalized training data).
Naı̈ve Bayesian: No parameters.
Random Forest: numTrees (10), seed (1).
doi:10.1371/journal.pone.0086309.t003
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fold cross validation. We divided the dataset into two groups as

mentioned above, and repeated the experiment 15 times each for

three cancer types. We calculated the average values of accuracy,

sensitivity, and specificity for each dataset in the adjusted group.

The sensitivity and specificity of TSVM could not to be calculated

since TSVM of SVM-light provided accuracy, precision, and

recall. Table 3 summarizes the result of these tests. In the original

group, the accuracy of our method was generally better than that

of the comparative methods. In particular, the performance

difference between the proposed method and other algorithms in

the adjusted group was larger than in the original group. If the

proportion of class labels is biased in a training dataset, the

classifier can be over-fitted toward a larger label. The proportion

of class labels in the original group was biased toward the non-

recurrence label, ‘‘21.’’ Therefore, the sensitivity and specificity of

most of the methods compared, including our method, were

different. Since predicting both labels is important in predicting

the recurrence of cancer, higher classification sensitivity and

specificity are better. In the adjusted group, our method had

higher sensitivity, specificity, and accuracy than the comparison

methods. Generally, we confirmed that the proposed method had

performance superior to that of the other methods.

The average accuracy increased 24.9% compared to the four

existing methods. For example, as shown in Table 3, the accuracy

of the proposed method was 0.725 and the accuracy of TSVM was

0.543 for the breast cancer dataset without adjusting the class label

ratio, an approximate 33% improvement. The average improve-

ment ratio for all datasets was 24.9%. Five of six experimental

datasets included the adjusted sample groups, and the accuracy of

the proposed method was higher than the existing methods. The

average difference in accuracy of the proposed method and its

competitors was 0.139. We also obtained AUC values for each

experimental dataset. As shown in Figure 4, the proposed method

showed a particularly higher AUC value for the breast cancer

dataset and a higher AUC value compared to other existing

methods for four of the six experimental datasets.

In addition, we performed an independent test where we

applied relief-F to select informative genes instead of PPI. We also

carried out a statistical analysis of significant difference in accuracy

for comparison among methods. The detailed experimental results

are described in the supporting information of Table S1, Table S3,

and Table S4 in File S1.

Discussion

The performance of a classification method is influenced by the

proportion of training data in each class. The computational

contribution of the proposed method is determination of the

coherent accuracy of the differences in class proportion. This is

advantageous since the number of samples for each class cannot be

adjusted during independent testing. In addition, though classifi-

cation based on semi-supervised learning has been applied to

microarray datasets, the results of the proposed method demon-

strate that the approach based on the ‘smoothness assumption’ was

sufficient for clinical application.

To reduce the dimension of the microarray data, we selected

gene sets with strong biological interactions. Therefore, the

sample-based graph of regularization was constructed based on

biological knowledge. The selected gene set can be referred to as a

recurrence-specific gene network. Our analysis demonstrated that

this gene network was biologically meaningful in regard to cancer

recurrence. To analyze the cancer-recurrence-specific gene

network, we enriched the informative gene set derived from the

Figure 4. Experimental results of AUC comparison of the proposed method with three existing methods. We compared AUC values of
the proposed method and other supervised learning algorithms.
doi:10.1371/journal.pone.0086309.g004
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optimal parameter set using the Gene Ontology (GO) database

and BiNGO [19]. Among the many enriched GO terms, we

focused on those related to cancer recurrence. Among several

recurrence related terms, we focused on GO terms related to

‘‘proliferation’’ and analyzed the sub-gene networks for those GO

terms, referring to the literature. To better analyze the details of

the sub networks related to proliferation in each cancer, we

illustrated the networks using Cytoscape [20], as shown in Figure 5,

Figure S3 in File S1, and Figure S4 in File S1.

The proposed method identified the sub-gene network com-

posed of BRCA1, CCND1, STAT1, and CCNB1, shown in

Figure 4, where the primary oncogene BRCA1 was connected

with another oncogene CCND1 and two hub-structured genes,

CCNB1 and STAT1. We assumed that these gene sub-networks

were related to breast cancer recurrence. The CCND1, CCNB1,

and STAT1 genes neighboring BRCA1 have also been reported to

have important roles in breast cancer recurrence. CCND1 is a

primary gene in the regulation of cell cycle progression, and Shu

et al. reported an association between breast cancer risk and

Figure 5. Representation of a breast cancer recurrence-specific gene sub-network related to cancer proliferation. The orange-colored
nodes are oncogenes.
doi:10.1371/journal.pone.0086309.g005
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survival based on CCND1 polymorphisms [21]. CCNB1 an

oncotype DX gene was reported that STAT1 was significantly

related to the activation of IFN-c and its antitumor effects [22,23].

If the STAT1-dependent expression of MHC proteins is

enhanced, tumor proliferation and survival are inhibited by the

activation of IFN-c. Desmedt et al. concluded that activation of

STAT1 plays an important role in the death of tumor cells and the

activation of apoptotic genes [23].

Conclusions

In this study, we proposed a novel semi-supervised learning

method based on graph regularization in order to predict cancer

recurrence. We also showed that the recurrence-specific gene

networks derived from the proposed method contain many

recurrence-related genes. We integrated the PPI data with the

gene expression data to produce an informative gene set and to

analyze the biological process related to recurrence. We also used

a graph regularization approach and semi-supervised learning

methods to predict the labels of unknown samples. We confirmed

that the performance of the proposed method was better than that

of several preexisting classification methods for colorectal and

colon datasets, which had the same proportion of class labels. In

the case of the breast cancer dataset, the proposed method showed

outstanding performance compared to the existing method with

both the original and the adjusted samples. Also, the proposed

method was superior to TSVM for three cancer datasets. It is

necessary to utilize the unlabeled samples because labeling

medically many samples is time consuming and expensive. In a

medical dataset, however, it is difficult to obtain a dataset with a

balanced number of samples. We plan to focus on solving this

problem of the semi-supervised learning-based method in future

work. Last, we identified the functional relationships among

recurrence related genes by constructing gene networks. We

concluded that the proposed method, which uses many data points

without class labels, is suitable for prognosis prediction and

analysis of the biological roles of genes related to cancer

recurrence.
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