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ABSTRACT
Flash-based Solid State Storage (flashSSS) has write-oriented
problems such as low write throughput, and limited life-
time. Especially, flashSSDs have a characteristic vulnera-
ble to random-writes, due to its control logic utilizing par-
allelism between the flash memory chips. In this paper,
we present a write-optimized layer of DBMSs to address
the write-oriented problems of flashSSS in on-line trans-
action processing environments. The layer consists of a
write-optimized buffer, a corresponding log space, and an
in-memory mapping table, closely associated with a novel
logging scheme called InCremental Logging (ICL). The ICL
scheme enables DBMSs to reduce page-writes at the least
expense of additional page-reads, while replacing random-
writes into sequential-writes. Through experiments, our ap-
proach demonstrated up-to an order of magnitude perfor-
mance enhancement in I/O processing time compared to
the original DBMS, increasing the longevity of flashSSS by
approximately a factor of two.

Categories and Subject Descriptors
H.2.2 [DATABASE MANAGEMENT]: Physical Design

General Terms
Design, Algorithms, Performance

1. INTRODUCTION
Flash-memory based Solid State Drives (flashSSDs) have

been developed so as to resolve the limitations of the flash
memory. FlashSSDs consist of a CPU, a RAM buffer, NAND
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flash memory chips, ECC (Error Correcting Code) mod-
ules, host/flash interfaces, and data/control buses that inter-
connect between each element of flashSSDs. In general,
flashSSDs extend its capacity by embedding a plurality of
the flash memory chips, and enhance write-throughput by
utilizing parallelism between the flash memory chips. By
the definition of Storage Networking Industry Assoication
[1], flash-memory based Solid State Storage (flashSSS) in-
cludes all kinds of flash memory based storage devices such
as flash memory chips, flashSSDs, and RAID solutions in-
cluding a number of flashSSDs.

We define common problems of flashSSS caused by fre-
quent write-operations as write-oriented problems. Raw flash-
memory chips have asymmetric read/write throughput due
to the much longer page-write latency regardless of the ac-
cess pattern. It also has limited lifetime, which is determined
by the maximum erase count of a flash-memory block. Con-
sequently, frequent write-operations make the response time
of flash memory worse, meanwhile shortening the lifetime
of flash memory. For flashSSDs, access pattern to the de-
vices has more significance than raw flash memory chips.
FlashSSDs are vulnerable to the random-writes. Random-
writes make the write-throughput of flashSSDs decrease,
and it is questionable whether the sufficient longevity of a
flashSSD device can be assured when a number of write-
operations are requested in OLTP (Online Transaction Pro-
cessing) environments.

Although IPL [4] and AppendPack [5] tried to address
the write-oriented problems, each method has the follow-
ing drawbacks. IPL proposed its own storage manager and
buffer manager. In the buffer manager, additional mem-
ory space called in-memory log sector is allocated for ev-
ery DBMS-page. Whenever a DBMS-page is updated, the
dirty region is logged into the in-memory log sector. If the
DBMS-page is evicted by the buffer manager, only the in-
memory log sector is written to the log region, not the en-
tire DBMS-page. Since the log-sector is smaller than the
DBMS-page, the IPL storage manager is able to reduce
page-writes considerably. However, if multiple log sectors
for a DBMS-page are written to the log region, IPL induces
additional cost to read the multiple log sectors when read-
ing the DBMS-page. AppendPack replaces random writes
into sequential ones through a new data layout. Append-
Pack adopts a mapping table analogous to the FTL map-
ping idea of flashSSDs, and contiguously writes the evicted
DBMS-pages to the storage space. The written locations
of the DBMS-pages are mapped to the DBMS-pages by the
mapping table. However, this approach is not enough to
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resolve the write-oriented problems. Merely replacing ac-
cess patterns cannot contribute on lengthening lifetime of
flashSSDs.

In this paper, we present a write-optimized layer of DBMSs
to address write-oriented problems of flashSSS in OLTP
DBMS environments. The layer consists of a log buffer
called write-optimized buffer, the corresponding log-space,
and an in-memory mapping table. The layer is closely asso-
ciated with a novel logging scheme called InCremental Log-
ging (ICL). The write-optimized buffer absorbs the evicted
DBMS-pages by collecting dirty regions of the DBMS-pages,
turning the dirty regions as logs. When it becomes full, it
flushes logs into the log-space called ICL log-space. Through
the ICL scheme, the log is incremented so that retrieve op-
eration of an up-to-date DBMS-page can read only one log-
page including the most recently incremented log for the
DBMS-page. The mapping table maintains the links from
each DBMS-page to the corresponding log-page.

The contributions of this paper are summarized as follows.
We presented a feasible way to resolve write-oriented prob-
lems of flashSSS by reducing page-writes with the least com-
promise of increasing page-reads. Moreover, our approach
replaces random-writes into sequential-writes meanwhile re-
ducing page-writes. The write-optimized layer achieves a
significant performance enhancement and lengthens the life-
time of flashSSS devices in the OLTP environments.

2. THE WRITE OPTIMIZED LAYER

2.1 The overall architecture
The write-optimized layer, which consists of one write-

optimized buffer, the corresponding log space, and an in-
memory mapping table, locates between the storage man-
ager and flashSSS. This layer is closely associated with a
novel logging scheme called InCremental Logging (ICL).

2.2 Write-optimized buffer
The traditional way of a buffer replacement operation is

to choose a victim DBMS-page and write the entire DBMS-
page to the corresponding location on hard-disks as pre-
sented in Figure 1. Four buffered DBMS-pages are evicted in
turn and thus four DBMS-pages are updated on the flashSSS.
We appended a buffer for reducing page-writes, called Write-
Optimized Buffer (WOB), between the DBMS buffer cache
and flashSSS. This buffer absorbs the frequent DBMS-page
writes by storing only the dirty regions and turning each of
them into a log. The log consists of two parts, the header
and the content of the log. The header includes the informa-
tion to identify the evicted DBMS-page, pairs of the offsets
and the sizes of the updated regions inside the DBMS-page.
The content is the updated tuples or the updated portions
of the DBMS-page.

It is obvious that the total size of produced logs of each
evicted DBMS-page is considerably smaller than the entire
DBMS-page size. Therefore, the WOB is capable of literally
buffering numerous DBMS-page write operations within the
limited main memory space. If the main memory space allo-
cated for the WOB becomes full, a flush operation to write
the accumulated logs into log pages is performed. In Figure
2, all the logs in the buffer are flushed into one log-page.
Four DBMS-page writes are reduced into one log-page write
compared to the traditional approach depicted in Figure 1.

DBMS Buffer Cache
DP3 DP4DP2DP1 DP3 DP4DP2DP1

dirty regions

DP3 DP4DP2DBMS Page 1 
Flash-memory based Solid-State-Storage

Main memory

(DP1)

DBMS Buffer Cache

DP1, DP2, DP3, and DP4 DP1, DP2, DP3, and DP4 
are evicted in turnare evicted in turn

DP3 DP4DP2DBMS Page 1 
Flash-memory based Solid-State-Storage

Main memory

(DP1)

4 DBMS pages are written! 4 DBMS pages are written! 

Figure 1: The traditional buffer replacement
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Write Optimized Buffer
DP1 log DP2 log DP3 log DP4 log

are evicted in turn!are evicted in turn!

Flash-memory based Solid-State-Storage
Main memory

DP3 DP4DP2DBMS Page 1
(DP1)

No DBMS pages are written! No DBMS pages are written! 

DBMS Buffer Cache

Write Optimized Buffer
flushed!flushed!

Flash-memory based Solid-State-Storage
Main memory

DP3 DP4DP2DBMS Page 1 
(DP1)

No DBMS pages are written! No DBMS pages are written! 

Log Page 1 
(LP1)DP1 log

DP2 log
DP3 log
DP4 log

1 log page is written!1 log page is written!
DP4 log4 DBMS-page writes are reduced 

to 1 log-page write

Figure 2: The naive write-optimized method

2.3 InCremental Logging
Page-writes can be significantly reduced by the WOB (Write-

Optimized Buffer) and its flush operation. Another exam-
ple of the flush operation is presented in Figure 3, where
8 DBMS-page writes have been replaced into 8 logs, and 4
log-pages are written by the 4 flush operations. This ex-
ample also demonstrates a representative drawback of the
naive write-optimized method. This approach causes ex-
cessive page-read operations when a DBMS-page is read. In
Figure 3 (a), in order to read up-to-date DP1, the DBMS has
to conduct 3 read operations: DP1, LP1, and LP3. Since
the log size is significantly small compared to the DBMS-
page size, it is possible that the logs corresponding to small
portions of the DBMS-page scatter over numerous log-pages.

In order to address this problem, we designed a novel log-
ging scheme named InCremental Logging (ICL). The prob-
lem is based on the fact that scattered logs over multiple
log-pages incur additional page-reads when an up-to-date
DBMS-page is read. Unless the logs to the DBMS-page scat-
ter over multiple log-pages, the additional read-cost can be
eliminated. In the ICL scheme, whenever the WOB flushes
its logs to a new log-page, it copies the former logs of the
DBMS-pages that the current logs belong to, from the previ-
ously written log-pages. Then the WOB writes the current
logs and previous logs together into a new log-page. This
process is represented in Figure 3 (b). The first flush oper-
ation of the WOB wrote the log belonging to DP1 and the
log belonging to DP2 into LP1. Then, the second flush op-
eration wrote the DP3 and DP4 log into LP2. In the second
flush operation, no copy operation of previous logs was in-
volved because the DP3 and DP4 log has no previous logs.
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In the third flush operation, however, the write-optimized
buffer copied previous logs since it has to write the logs of
DP1 and DP2 (marked dark blue) that have the previous
logs (marked green) in LP1. Consequently, the copied pre-
vious logs were written into LP3 along with the new logs as
presented in Figure 3 (b). The same process was iterated in
the fourth flush operation. The previous logs, DP3 and DP4
log in LP2, were copied, and were written together with the
new DP3 and DP4 log into LP4.

This ICL scheme makes the process reading up-to-date
DBMS-pages far less expensive compared to the naive ap-
proach described in Figure 2. The process induces only
one log-page read in the case of ICL. In Figure 3 (b), each
DBMS-page (DP1, DP2, DP3, DP4) needs to read only one
log-page (LP3, LP3, LP4, LP4, respectively). Although the
naive approach causes two log-page reads in order to retrieve
each up-to-date DBMS-page in Figure 3 (a), it induces up-to
dozens of log-page reads according to how small the average
log-size is compared to the DBMS size. Based on the fact
that they are incremented, the logs stored in a log-page are
denoted by ICL logs to differentiate them from the logs in-
side the WOB. The ICL log is a set of logs since it includes
more than one log.

Even though the size of an ICL log is incremented, the
capability of reducing page-writes still remains. The mech-
anism reducing page-writes is to process as many evicted
DBMS-pages as possible, by converting them into relatively
small logs and flushing the logs into a log page at once. By
doing so, many write-operations to DBMS-pages are reduced
into one log-page write. The only thing changed in ICL is
that the log size can be incremented for every flush opera-
tion. As long as the size of an ICL log is less than that of
a DBMS-page, the benefit is preserved, since another ICL
log can be stored in the remaining space of the log-page af-
ter storing the ICL log. This is demonstrated in Figure 3
(b), where the write-optimized layer reduced 8 DBMS-page
writes into 4 log-page writes.

DBMS Buffer Cache

Write Optimized Buffer

DP3 DP4DP2DBMS Page 1
Flash-memory based Solid-State-Storage

Main memory

(DP1)

Reading each up-to-date DBMS-page 
needs two additional log-page readsneeds two additional log page reads

LP3 LP4LP 2Log Page 1 (LP1)
DP1 log
DP2 log

DP3 log
DP4 log

DP1 log
DP2 log

DP3 log
DP4 log

8 DBMS-page writes are reduced to 
4 log-page writes

DBMS Buffer Cache

Write Optimized Buffer

DP3 DP4DP2DBMS Page 1 
Flash-memory based Solid-State-Storage

Main memory

(DP1)

Reading each up-to-date DBMS 
page needs only one log-page readpage needs only one log page read

LP3 LP4LP 2Log Page 1 (LP1)
DP1 log
DP2 log

DP3 log
DP4 log DP1 log

DP2 log

DP3 log

DP4 logcopiedcopied DP2 log DP4 logpp

Still, 8 DBMS-page writes can be 
reduced to 4 log-page writes

(a) Naive method (b) InCremental Logging

Figure 3: The InCremental Logging approach

The read process of a DBMS-page in the ICL scheme is as
follows. First, the write-optimized layer reads the DBMS-
page. If the DBMS-page has the corresponding ICL log, it
reads the log-page containing the ICL log. Then, it extracts
the ICL logs belonging to the DBMS-page from the log-page.
Next, the logs inside the WOB are inspected. If the logs that
belong to the DBMS-page exist, they are extracted, too.

The ICL logs from the log-page and the logs from the WOB
are reflected to the DBMS-page. Finally, the DBMS-page is
retrieved to the DBMS buffer cache.

Thus far, we explained several features of ICL. A miss-
ing point is what happens after an ICL log grows enough
to make no benefits any longer. To handle this, the ICL
merge operation is performed. The sufficiently incremented
logs are merged to the corresponding DBMS-pages. The
ICL log-space can be recycled for later use. Figure 4 (a)
describes the process while ICL logs for DP1 and DP2 were
incremented up-to the half size of a DBMS-page. Therefore,
no log page is left in the circumstance in Figure 4 (a). In
order to resolve situations like this, the ICL scheme reflects
the latest ICL logs into the corresponding DBMS-pages, and
the log-pages are reset for reuse, as presented in Figure 4 (b).
The reflecting process copies the latest ICL logs (the most
incremented log for each DBMS-page) from log-pages to the
corresponding DBMS-pages. In Figure 4 (b), the latest ICL
log for DP1 is stored in LP4 so the log-contents of the ICL
log were copied to the offsets of the update regions inside
DP1, and a similar process was performed for the latest ICL
log of DP2. The reset process of log-pages requires no ac-
tual page-writes since the log-pages can be merely logically
invalidated without any physical page rewrite operations.

DP3 DP4DP2DBMS Page 1 
Flash-memory based Solid-State-Storage

Main memory

(DP1)

LP3 LP4LP 2Log Page 1 (LP1)
DP1 log
DP2 log

DP2 log DP1 log DP1 log
DP1 log

DP2 log
DP2 logNo log page is left! No log page is left! 

DP3 DP4DP2
Flash-memory based Solid-State-Storage

Main memory

DBMS Page 1

Valid logs are merged to DP1, DP2!Valid logs are merged to DP1, DP2!

(DP1)

g gg g

DP1 log
DP2 log

DP2 log DP1 log DP1 log
DP1 log

LP3 LP4LP 2Log Page 1 (LP1)

DP2 log
DP2 logLog pages has been reset for reuse!Log pages has been reset for reuse!

(a) Before the ICL merge (b) After the ICL merge

Figure 4: The ICL merge operation

Another missing point is how much page-read cost is ex-
pected in the copy process of previous logs. In the worst
case, each new log to be flushed can have a previous ICL
log stored in distinct log-pages. Even in this case, the ad-
ditional read cost caused by the copy operations is limited
to log-page reads as many as the total number of the new
logs flushed by the WOB (which is the same as the number
of evicted DBMS-pages). The additional read cost of ICL
is relatively small compared to the naive write-optimized
approach and IPL.

3. EXPERIMENTAL ANALYSIS
In the experiments, we compared the performance of our

approach with the original postgresql DBMS, and postgresql
DBMS where the AppendPack approach was adopted. We
implemented our approach and the AppendPack inside the
postgresql DBMS according to the papers. IPL was not
compared because a main idea of the IPL approach should be
adjusted for a fair comparison. Since it is closely integrated
with raw flash memory chips, this feature is not compatible
with the flashSSDs where manufacturers embed their own
FTLs.
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For the experiments, we used the following DBMSs where
the three approaches are applied.

• ORIG: the original postgresql DBMS
• WOL: the postgresql DBMS where the Write-Optimized

Layer is implemented
• A&P: the postgresql DBMS where the AppendPack

approach is implemented

Since even in a single type of flashSSS, the performance
varies according to the manufacturer of the device, it seems
fairer to provide the invariable measures regardless of the
flashSSS type, such as the number of I/O operations. In
order to compare the performance of each approach on var-
ious types of flashSSS, we measured the number of I/O op-
erations requested by the postgresql where each method is
implemented. Then, we estimated the I/O processing time,
based on the unit cost of each I/O operation on the vari-
ous types of flashSSS, which we measured by using IOmeter
benchmark [3] through another indepedent experiments.

To assess the performance associated with OLTP work-
loads, we used dbt2[2] which is an open-source tool gener-
ating TPC-C benchmark. The initial DBMS size was set to
about 1GB (10 data warehouses). The number of DBMS
client connections and the number of terminals per data
warehouse were set to 100 and 10, respectively (100 ter-
minals in total). 120,000 transactions were executed in each
experiment. The default configurations of postgresql were
intact except the buffer-cache size of 100MB. To be fair in
main memory utilization, we increased the buffer cache size
of ORIG by the WOB size and the maximum size of the ICL
mapping tables. For A&P, only the buffer cache size is in-
cremented by the WOB size since it requires the in-memory
mapping table as well. A Linux machine equipped with 4
core CPU and 4GB RAM was used.

In the experiments, we compared our approach with the
other methods, increasing the WOB size. We first mea-
sured the number of I/O operations requested by postgresql
DBMSs. Then, the I/O processing time is estimated accord-
ing to the different types of flashSSS devices.
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Figure 5: I/O operations according to WOB size

Figure 5 shows the I/O performance of the three meth-
ods. It can be notified that WOL reduces the page-writes
of ORIG by a factor of two. Contrarily, the increased page-
reads do not exceed two times of the page-reads caused by
ORIG. This is due to the fact that the ICL scheme needs
only one log-page read to read an up-to-date DBMS-page. It
can be expected that the lifetime of flashSSS will be length-
ened by up-to a factor of two, since the lifetime of flashSSS
is approximately inverse-proportional to the number of the
performed page-writes.

Figure 6 presents the estimated I/O processing time of
each method on various types of flashSSS. It can be notified
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Figure 6: Estimated I/O processing time

that our approach dominated other methods in all the ex-
periments except the high-end flashSSD case. Even in the
high-end flashSSD case, there is no significant gap between
the total cost of WOL and A&P. WOL reduced 72% of the
I/O processing time of ORIG whereas A&P reduced 77% of
the I/O processing time of ORIG, on average. In case of
low-end flashSSD, WOL enhanced the I/O processing time
of ORIG by an order of magnitude (reduced 91% of ORIG’s
I/O processing time).

4. CONCLUSIONS
Flash memory has become one of the major storage de-

vices. The manufacturers have been trying to expand the
usage spectrum of the flash memory. To achieve this, the
problems caused by frequent write-operation should be ad-
dressed first. In this paper, we focused on reducing page-
writes to enhance the I/O processing time of DBMSs and the
longevity of the flash based storage devices. Moreover, we
developed a way to convert random-writes into sequential-
writes, while reducing page-writes at the same time. Our
approach has contributions on all types of flash-memory
based storage devices including raw flash memory chips, and
flashSSDs. The feasibility of the idea was examined through
the implementation inside the postgresql DBMS. In the ex-
periments, we found out that our approach improves the I/O
processing time of the original DBMS by up-to an order of
magnitude, lengthening the lifetime of flash-memory based
storage devices by approximately a factor of two.
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