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Abstract—Copy-Number Variations (CNVs) can be 
defined as gains or losses that are greater than 1kbs of 
genomic DNA among phenotypically normal 
individuals. CNVs detected by microarray based 
approach are limited to medium or large sized ones 
because of its low resolution. Here we propose a novel 
approach to detect CNVs by aligning the short reads 
obtained by high-throughput sequencer to the 
previously assembled human genome sequence, and 
analyzing the distribution of the aligned reads. 
Application of our algorithm demonstrates the 
feasibility of detecting CNVs of arbitrary length, which 
include short ones that microarray based algorithms 
cannot detect. Also, false positive and false negative 
rates of the results were relatively low compared to 
those of microarray based algorithms. 
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I. INTRODUCTION 
Copy-Number Variations (CNVs) can be defined 

as gains or losses that are greater than 1kbs of 
genomic DNA among phenotypically normal 
individuals [1, 2]. It is known that CNVs account for 
a significant proportion of normal phenotypic 
variation, including disease susceptibility [3-5]. 
Therefore, identifying and cataloging of CNVs are 
essential for the genetic and functional analysis of 
human genome variation. 

Many algorithms were proposed to assess CNV 
regions of human genome using microarray, which 
includes Whole Genome TilePath (WGTP) array [6, 
7] and SNP genotyping array [8, 9]. The popularity 
of these methods mainly accounts for the relatively 
low cost of WGTP array and SNP array. However, 
the resolution of these platforms limits the size of 
CNVs found. Generally, these methods are known to 
be useful to detect only medium or large sized CNVs. 
Moreover, high noise level of these platforms tends 

to result in relatively high false positive and false 
negative rates. 

The comparison of two or more human genome 
sequences can detect CNVs, regardless of CNVs’ 
sizes, more precisely [10-12]. The weakest point of 
the sequence comparison methods is the high cost of 
the human genome sequence. There has been much 
effort to lower the cost to get the whole human 
genome sequence, and high-throughput sequencing 
is believed to take a prime role [13]. High-
throughput sequencing machine can generate 
enormous short reads in a short time with relatively 
low cost. Table 1 [13] shows the details of the reads 
and throughput of various high-throughput 
sequencing platforms. 

TABLE 1. HIGH- THROUGHPUT SEQUENCING PLATFORMS [13] 

Company Format 
Read 

Length 
(bases) 

Expected 
Throughput 
MB(million 
bases) / day 

454 Life Sciences Parallel bead 
array 100 96 

Agencourt 
Bioscience 

Sequencing by 
ligation 50 200 

Applied 
Biosystems 

Capillary 
electrophoresis 1000 3-4 

Microchip 
Biotechnologies 

Parallel bead 
array 850-1000 7 

NimbleGen 
Systems 

Map and survey 
microarray 30 1000 

Solexa (Illumina) Parallel 
microchip 35 500 

LI-COR Electronic 
microchip 20000 14000 

Network 
Biosystems Biochip 800+ 5 

VisiGen 
Biotechnologies 

Single molecule 
array NA 1000 

 
There have been many algorithms proposed for 

de novo assembly of the human genome [14-16]. 
What makes assembly difficult is the short length of 
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the reads – as reads get shorter, the number of 
necessary reads increases exponentially, which 
means high coverage is required. Until now, the 
number of coverage is limited due to high cost, 
therefore it might not be practical to detect CNVs by 
comparison of whole genome sequences. Here we 
propose a novel approach to detect CNVs by 
aligning the short reads obtained by high-throughput 
sequencer to the previously assembled human 
genome sequence, and analyzing the distribution of 
the aligned reads. The idea starts from the 
observation as follows: Though aligned reads are not 
sufficient to be formed into a human genome 
sequence due to the limited coverage, it is sufficient 
to detect CNVs through examining their distribution. 
Our algorithm can be applied even though the 
coverage is much less than 10, which is definitely 
insufficient for de novo assembly of the human 
genome. Roughly, a base pair in a reference 
sequence to which relatively more reads are aligned 
has higher probability to be a gain and a base pair in 
a reference sequence to which relatively less reads 
are aligned has higher probability to be a loss. The 
consecutive 1000 or more base pairs, which have 
statistically significant score, calculated by our 
algorithm, can be judged to form a gain or a loss 
according to their score. The details of this process 
are given in the chapter 2.3. 

We used the synthetic genome sequences to 
determine the optimal parameters for our CNV 
detection algorithm. The synthetic genome 
sequences were generated by the synthetic genomic-
variants generator, which uses a previously built 
human genome sequence (here, we used Build 36.3) 
as an input and outputs the synthetic genome 
sequence by implanting CNVs as well as various 
genetic variations, including SNPs, insertions, 
deletions and inversions into the input sequence. 
After getting the synthetic genome sequence, we get 
short reads through simulation of the shot gun 
sequencing by Illumina’s high-throughput sequencer. 
The high-throughput sequencing simulator receives 
the length of the read and the coverage as an input 
and generates short reads as an output. After aligning 
the generated short reads to the reference genome 
sequence (Build 36.3) using Blast, we applied the 
CNV detection algorithm varying the input 
parameters and measured the false positive and false 
negative rates of the results. The overall process is 
shown in Figure 1, and details about the synthetic 
genomic-variants generator and high-throughput 
sequencing simulator will be described in the chapter 
2.1 and 2.2, respectively. 

Application of our algorithm demonstrates the 
feasibility of detecting CNVs of arbitrary length, 
which include short ones that microarray based 
algorithms cannot detect. Also, false positive and 
false negative rates of the results were relatively low 
compared to those of microarray based algorithms. 

 

 
Figure 1. Overall process of detecting CNVs using synthetic 

human genome sequence 

II. METHODS 

A. Synthetic Genomic-variants Generator 
The synthetic genome sequences can be generated 

by synthetic genomic-variants generator, which uses 
a previously built human genome sequence as an 
input and outputs the synthetic genome sequence by 
implanting CNVs as well as various genetic 
variations, including SNPs, insertions, deletions and 
inversions into the input sequence. Those synthetic 
genome sequences are applicable to several types of 
test to verify genomic variants. We call the input 
sequence reference sequence, and call the output 
sequence test sequence which is a genomic sequence 
with synthetic variants. The variable n means the 
length of reference genome sequence. User can set 
the values of parameters manually, or can use default 
parameters. We referred to Database of Genomic 
Variants [17] and dbSNP [19] for default values and 
ranges of parameters. 

TABLE 2. PARAMETERS AND RANGES OF SYNTHETIC GENOMIC-
VARIANTS GENERATOR 

Genomic 
variants Parameters Range(Default value) 

Gain 
Occurrence frequency 0~n(303152) 

Length 1000~8031373 bps 
Copy numbers 1~10 

Insertion
Occurrence frequency 0~n(529287) 

Length 0~999 bps 
Copy numbers 1~10 

Deletion Occurrence frequency 0~n(529287) 
Length 0~999 bps 

Inversion Occurrence frequency 0~n(6263) 
Length 0~5081342 bps 

SNP Occurrence frequency 0~n(145) 
Length 1 bp 

 
Occurrence frequency is a frequency of a 

genomic variation. The probability that a genomic 
variation occurs at each position in P is 
(1/occurrence frequency), where P is the set of all 
position behind the end position of the previous 
variation (If there is no previous variation, P contains 

267



all the positions in the reference sequence). Namely, 
occurrence frequency means that a genomic variant 
may occur every occurrence frequency bps. 
Exceptionally, If occurrence frequency is 0, it means 
that there are no genomic variations. For example, if 
occurrence frequency is 2,000 and the end position 
of previous variation is 10,000, then the probability 
that a genomic variation occurs in position 10,001, 
10,002, and so on, is 1/2,000. 

TABLE 3. PROCESSES FOR IMPLANTING GENOMIC VARIANTS 

Genomic 
variations Description 

Gain 

1. Each position in P, where P is the set of all 
positions behind the end position of the previous 
gain, is selected as beginning position of a gain 
with probability of 1/occurrence frequency. 
2. Length of a gain is decided by the parameter 
length. If a gain occurred at the position s, 
sequence from s to s+length-1 is copied. If 
s+length-1 > n, length will be n-s+1. 
3. Paste copied sequence to the random position x 
of test sequence. If other variants have already 
occurred at position x, position x is randomly 
selected again. 
4. Repeat 3 as copy numbers times. 
5. Repeat 1~4 unless P = Φ. 

Insertion Same as gain except that length is limited up to 
999bps. 

Deletion 

1. Each position in P, where P is the set of all 
positions behind the end position of the previous 
deletion, is selected as beginning position of a 
deletion with probability of 1/occurrence 
frequency. 
2. Length of a deletion is decided by the parameter 
length. If a deletion occurred at the position s, 
sequence from s to s+length-1 is deleted. If 
s+length-1 > n, length will be n-s+1. 
3. Repeat 1~2 unless P = Φ. 

Inversion 

1. Each position in P, where P is the set of all 
position behind the end position of the previous 
inversion, is selected as beginning position of an 
inversion with probability of 1/occurrence 
frequency. 
2. Length of an inversion is decided by the 
parameter length. If an inversion occurred at the 
position s, the sequence from s to s+length-1 is 
arranged in reverse order. If s+length-1 > n, length 
will be n-s+1. 
3. Change each nucleotide of arranged sequence to 
its complement. 
4. Repeat 1~3 unless P = Φ. 

SNP 

1. All the positions of the test sequence are selected 
as position of a SNP with probability of 1/ 
occurrence frequency. 
2. If a SNP occurred at the position s, nucleotide at 
s will be replaced with another one. 
3. Repeat 1~2 unless P = Φ. 

 
 
Parameter length and copy numbers means the 

length of the variation and copy numbers of gains 
and insertions, respectively. The number of genomic 
variants varies with their size. We divide length into 
several groups according to size distribution of 
genomic variants, based on the statistical data from 
Database of Genomic Variants [17], and apply 
different probability of occurrence, respectively. 

For example, the gain whose size is 1~10 kbps 
occurs with higher probability than the gain whose 
size is more than 1 mbps. The size group is chosen 
with the probability based on data from Database of 
Genomic Variants, then the length is randomly given 
within the group range. The value of copy numbers is 
selected in the range of 1 to 10. Lower copy number 
is selected with higher probability than higher copy 
number. Algorithm about each variant is described in 
Table 3. 

Note that event ‘loss’ is not implemented. Since 
loss of the test sequence is relatively a gain of the 
reference sequence, inserting loss into the test 
sequence is equivalent to inserting gain into the 
reference sequence. 

B. High-throughput sequencing and Alignment 
The test sequence of the previous step, synthetic 

genomic-variants generator, is used for an input 
sequence for this stage. We simulated Illumina’s 
high-throughput sequencing method in a 
computational way. Currently in Illumina’s high-
throughput sequencing, 5 million bases of 36bp reads 
can be produced per day by shot gun sequencing. 
The simulator repeatedly selects random, 
consecutive 36 base pairs from input genome 
sequence, and each of the selected 36 base pairs 
forms a read. Note that reads can overlap with other 
reads. Each read is called as test query. Test queries 
form 1 coverage if the sum of the length of all test 
queries equals the total size of input genome 
sequence. Thus, the total length of the test query is 
same as the length of input genome sequence × 
coverage. Generally, more precise data can be 
acquired with larger coverage, but additional time 
and cost are required. The length of test queries and 
coverage can be adjusted, so that various 
experiments can be performed with those data. 
Default coverage of our method is 3, which can be 
regarded as practical in cost-wide. 

Generated test queries are aligned to the reference 
sequence by BLAST 2.2.18 [18], widely used tool 
for searching for sequence similarities. We allowed 2 
miss matches, otherwise, sequencing errors and 
SNPs may interfere perfect matches. 

C. CNV Detector 
The number of times that each test query is 

aligned, as well as the location to which each test 
query is aligned is derived by post-processing the 
result file of BLAST run. We call the number of 
alignment as score, and location that is aligned as 
position. 

A single test query can be aligned to the several 
regions of the reference sequence. In this case, the 
score of the region is divided by the number of the 
aligned regions. The formula for calculating score is 
shown as:  

268



query testip positionscore x
query testr

queries testn
p positionscores

 otherwisex

 if r
r

x
xs

pi

p

pi

pin

i

pip

th by  attributed at   
aligned is  a  whereregions ofnumber   the 

 ofnumber   total 
at    total 

,0

,0,1

1

=
=
=
=

⎜
⎜
⎜
⎜

⎝

⎛

=

≠=
=∑

=

 
For example, if a single test query is aligned to 

just one region of reference sequence, that region 
will get score 1. If a single test query is aligned to 
two regions of reference sequence, each region will 
get score of 0.5. Figure 2 shows that example. 

 

 
Figure 2. Scoring example 

Since test queries are produced from random 
position of the test sequence with overlapping, they 
cannot cover the whole region of test sequence 
evenly. Even in a gain region, there could be some 
positions whose score is noticeably low.  Therefore it 
is not comprehensive to identify a region as gain 
only by considering continuous positions having 
high score. So we make each 1kbps of nucleotides 
into a group, by the sliding window method, such as 
1 to 1000, 2 to 1001, 3 to 1002, and so on. Then, the 
sum of score of each group is calculated. These 
summed scores are called a group score. Group1 
score means the sum of scores from position 1 to 
1000. Group size can be changed by user. 

We assumed the distribution of group scores 
follows normal distribution. In the normal 
distribution, group scores which exceed  μ + kσ (μ = 
average of whole group scores, σ = standard 
deviation of whole group scores, k = constraint 
parameter) can be statistically significant. In other 
words, the regions whose group score exceeds μ + 
kσ can be detected as gain. If the value of k increases, 
false negative rate will increase and false positive 
rate will decrease. On the other hand, if the value of 
k decreases, false positive rate will increase and false 
negative rate will decrease. Thus it is important to 
find optimal k that minimizes both false positives 
and false negatives. 

However, it’s not reasonable to determine 
whether the group is a CNV or not simply by the 
score previously mentioned, since the group score 
may be affected excessively by scores of both ends. 
We will describe how to revise the score with Figure 
3. 

 

 
Figure 3. Revised CNV 

In this example, the region which is likely to be a 
CNV is position 4~7. However position 2~9 are 
identified as a CNV according to the scoring 
algorithm mentioned previously. For example, 
group2 score is affected by position 4~5, which have 
relatively high score, and group6 score is affected by 
position 6~7 in the same way.  Even though group2 
and group6  have some positions whose score is low, 
like position 2~3 and position 8~9, they can be 
selected as gain. We do want to exclude these 
positions, 2~3 and 8~9 from the CNV. This problem 
can be avoided by setting threshold higher, however 
that may increase false negative rate. We reduced the 
CNV by adding the half of the group size to the 
beginning position of the CNV (positions 2~9 
become 4~9), and by subtracting the half of the 
group size from the ending position of the CNV 
(positions 4~9 become 4~7). We reduced the CNV 
by 500bps, which is the half of the group size. 

In addition, sometimes a group score may exceed 
threshold because of a few positions whose scores 
are very high, though the region is not a gain, 
actually. Several copies of short insertions can cause 
this problem. To prevent this problem, we enforced 
that the number of positions of which score is over (μ 
+ kσ) / group size should be more than a certain 
number, to be identified as gain. We call this 
parameter minimum threshold. We used 500, which 
is obtained experimentally. 

If a region satisfies all the conditions previously 
mentioned, which are 

1. The group score acquired by our method is 
higher than μ + kσ. 

2. Both ends of the continuous groups acquired 
by 1 are revised by 500bps. 

3. The number of positions whose score is over 
(μ + kσ) / group size is more than minimum 
threshold. 

4. Length is more than 1kbps. 
, then the region is identified as a gain. 
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III. EXPERIMENTAL RESULTS 
NT_011255.14, which is one of the contigs in 

chromosome 19 is used as the reference sequence. 
The total length of the reference sequence is 
7286004bps. Then test sequence is generated from 
the reference sequence by synthetic genomic-
variants generator. 

As mentioned previously, it is important to find 
the optimal value of k. We performed iterative 
experiments varying k, using 20 genome sequences 
generated by synthetic genomic-variants generator. 
We selected k which minimizes the sum of the false 
positive and false negative rates. 

The result of experiments is displayed in Figure 4. 
A pair of dotted line and solid line with same color 

represents one experiment. Dotted line indicates false 
positive rate, and solid line indicates false negative 
rate. As we can see in Figure 4, the intersecting 
points of each graph pair minimize the sum of false 
positive and false negative rates, concurrently. 
Therefore value of k at intersecting point can be said 
to be optimal. We can find the range of optimal k to 
be in between 1.7 and 1.85. The average value of k in 
20 experiments is 1.75, so we used k=1.75 for further 
experiments. 

Next, we performed experiment to detect CNVs 
in test sequence produced by synthetic genomic-
variants generator, using default parameters. We set 
coverage as 3, group size as 1000, minimum 
threshold as 500, and k as 1.75. 

 

 
Figure 4. Experiments to detect optimal k 

 
Figure 5. Result of validation 

 
Figure 5 shows the result. X axis is the position of 

the reference sequence, and Y axis means the score. 
The score of each group is marked with a red dot. 
The green and red lines indicate the region where 
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CNVs actually exist and the region detected as 
CNVs by our method. The summary of our 
experiments are shown in Table 4. 

TABLE 4. THE SUMMARY OF THE EXPERIMENT 

Category Value 
Total CNV regions 484724 bps 
Detected CNV regions 450286 bps 
False positives 24824 bps 
False negatives 59262 bps 
False positive rate 0.0551294 
False negative rate 0.122259 

IV. CONCLUSION 
We described the approach to detect CNVs of 

human genomes using the reads produced by high-
throughput sequencing. Firstly, we developed 
synthetic genomic-variants generator to produce 
synthetic genom]u=i90-e sequences with various 
types of variants including CNVs. To our knowledge, 
this synthetic genomic-variants generator is the first 
formulation for genomic-variants problems. It can be 
applied to similar experiments for detecting genomic 
variants including CNVs in a computational way.  

Then we simulated high-throughput sequencing 
using this synthetic genome sequence to produce test 
queries and align them using BLAST. Finally, we 
detected CNVs using our own detecting algorithm. 

By comprehensive experiments, we demonstrated 
that our method can detect CNVs of arbitrary length, 
including very short ones, with relatively low 
coverage. Moreover, our method has low false 
positive and negative rates compared to those of 
microarray based methods. 

In the future, we plan to improve our synthetic 
genomic-variants generator to produce sequences 
with genomic variants much more similar to the real 
human genome sequences, and apply our method to 
real short reads. 
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