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Sequence alignment is a widely-used tool in genomics. With the development of next
generation sequencing (NGS) technology, the production of sequence read data has
recently increased. A number of read alignment algorithms for handling NGS data have
been developed. However, these algorithms suffer from a trade-off between the
throughput and alignment quality, due to the large computational costs for processing
repeat reads. Conversely, alignment algorithms with distributed systems such as Hadoop
and Trinity can obtain a better throughput than existing algorithms on single machine
without compromising the alignment quality. In this paper, we suggest BulkAligner, a
novel sequence alignment algorithm on the graph-based in-memory distributed system
Trinity. We covert the original reference sequence into graph form and perform sequence
alignment by finding the longest paths on the graph. Our experimental results show that
BulkAligner has at least an 1.8� and up to 57� better throughput with the same, or higher
quality than existing algorithms with Hadoop. We analyze the scalability and show that we
can obtain a better throughput by simply adding machines.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

In many vital phenomena, genomes represent the most basic unit of information. Genomes convey genetic information
from ancestors to descendants, and accumulated polymorphisms play important roles in the evolution of organisms.
Sequence alignment is one of the most basic and widely-used tools for the analysis of genome sequences. To borrow a phrase
from Mount [22], sequence alignment can be defined as follows.

‘‘The sequence alignment algorithm is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity
that may be a consequence of functional, structural, or evolutionary relationships between the sequences.’’

Sequence alignment algorithms are widely used in genome re-sequencing [10,15], searching for genome polymorphisms
[4], and TFBS (Transcription Factor Binding Site) finding [17,25].
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NGS technology has progressed considerably in recent years. As a result, the size of input data has increased explosively
[21]. Therefore, sequence alignment algorithms with a high throughput allowing polymorphisms and sequencing errors are
now needed. Many of the existing sequence alignment algorithms, such as RMAP [34,35], SOAP2 [16], SOAP3 [19], BWA [13],
Bowtie [12], and Bowtie2 [11] are designed for execution on a single machine. However, sequence alignment algorithms
allowing for gaps and mismatches have huge computational costs. In order to process mass-produced NGS reads, the quality
must be sacrificed to archive an acceptable throughput. As the computing power continues to grow and distributed systems
such as Trinity [31] and Hadoop [1] appear, it is possible to obtain a better throughput without compromising the alignment
quality (in comparison with existing algorithms operating on a single machine).

Various distributed systems such as Hadoop and Trinity have recently been developed. Hadoop can support parallel pro-
gramming using the MapReduce [8] framework, which is widely-used in bioinformatics research [38]. However, Hadoop is
not suitable for processing algorithms requiring a high throughput, as it must not only convert the original sequence data
into another format that can be processed in the Map/Reduce function, but also arouse Disk I/O, since it saves the interme-
diate and final results to a local disk in the Map/Reduce phase. By contrast, Trinity is a new distributed system supported by
Microsoft which is suitable for handling sequence alignment, making it possible to obtain a better throughput by construct-
ing in-memory clusters and processing the graph-form data with parallel computing.

In this paper, we suggest BulkAligner using Trinity as an algorithm for solving the sequence alignment problem. First,
BulkAligner converts original reference sequence data into de-bruijn [3] graph form, and builds it into the memory cluster
of each slave. Second, in order to perform sequence alignment, BulkAligner extracts some parts of the reference graph to
build the read graph for each read. Third, BulkAligner identifies the longest paths allowing some hops in the read graph
as candidates, and chooses the best result using glocal alignment [2].

We compare BulkAligner with both CloudBurst [30] and CloudAligner [24], both of which use Hadoop. In the experimen-
tal results, BulkAligner exhibits better quality for long reads than short reads. When compared with prior algorithms, the size
of the I/O data is bigger in BulkAligner, due to the FASTQ [7] and Sequence Alignment/Map (SAM) [14] formats. Nevertheless,
when performing alignment for millions of reads allowing gaps and mismatches, BulkAligner shows a better throughput
(1.8–57x) and quality than CloudBurst, and also shows a better throughput by at least 7.8�, and up to 24�, than CloudAlig-
ner, with the same quality. Finally, we also prove scalability, an important characteristic of distributed processing algo-
rithms, by scaling the number of nodes in the distributed system.

This paper is organized as follows. The next section presents the existing distributed systems and previous sequence
alignment algorithms. Section 3 describes the suggested basic sequence alignment algorithm model, and provides examples
of our method. Section 4 explains the experimental environments and data, displays the BulkAligner results according to the
parameters, and compares its performance with that of existing algorithms. The last section concludes the paper.

2. Related works

2.1. Distributed systems

There are currently two types of representative distributed processing frameworks. The most popular is the Map/Reduce
framework, which was first proposed by Google and later open-sourced by the Apache Hadoop project. There are now
numerous distributed processing platforms, such as impala [6], Tajo [5], and Hive [37], as well as others based on the Hadoop
Map/Reduce and Hadoop Distributed File System (HDFS) [33]. However, all have common limitations, including expensive
costs for conversion to the Map/Reduce framework and disk-based I/O, due to the common core components of Hadoop Map/
Reduce and HDFS. Second, following the advent of the big data era prompted by Hadoop ecosystems, Google announced a
distributed processing platform suitable for large-scale graph processing, called Pregel [20]. Pregel supports native graph
processing operations, such as graph exploration (i.e., message passing) and aggregation, replacing the Map and Reduce
operations in Hadoop. Moreover, Pregel can process an entire graph using in-memory clusters, excluding disk I/O. This
framework is much more efficient for graph processing than the Map/Reduce framework, given that graph processing inher-
ently requires frequent random accesses from vertice to vertice, creating numerous disk accesses. Map/Reduce consists of
repeated sort-and-merge operations that are suitable for the batch processing of large chunks of data such as web pages,
but not for exploring distant nodes and edges in a large graph. Other graph distributed processing platforms inspired by Pre-
gel, such as Trinity, GraphLab [18], and PowerGraph [9], have recently been proposed.

In terms of sequence alignment, it is much less expensive to convert an original sequence into a graph operation than to
convert it into a Map/Reduce operation. Map/Reduce is so different from the traditional programming paradigm that many
existing algorithms would need to be re-written. Moreover, the size of the sequence data is manageable for the in-memory
cluster systems. Typically, even in a project with a single genome, the entire sequence data is very large (more than hundreds
of gigabytes), while the sequence alignment algorithms can only load dozens of gigabyte data as indexed sequences into the
memory. The rest of the sequence data are processed one after another as queries. Therefore, the whole input data used in
sequence alignment can be loaded into the in-memory clusters of several desktop machines.

For these reasons, we chose a graph data distributed processing platform for NGS sequence alignment offering both a bet-
ter throughput and higher quality. Our algorithm can be flexibly implemented in any graph distributed processing platform.
However, for now, Trinity remains the best option, as the other platforms are either under development or are not yet open-
sourced. Moreover, analyses of the graph data distributed systems also support the superior efficiency of Trinity [32].
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2.2. Existing sequence alignment algorithms

A number of single machine-based algorithms such as RMAP, SOAP3, BWA and Bowtie2, have been developed for NGS
sequence alignment. Due to polymorphisms and repeats in the genome, the latter compromise the alignment quality in order
to achieve an acceptable throughput. A toolkit was proposed to execute those algorithms in a Hadoop cluster [26]; however,
this does not offer a fundamental solution for utilizing the power of distributed systems. The recent advances in distributed
systems have provided an opportunity for the improvement of both the alignment quality and throughput.

The existing sequence alignment algorithms with distributed systems are CloudBurst and CloudAligner. Both use seed-
and-extend alignment techniques like RMAP to handle the sequence alignment. CloudBurst is the first sequence alignment
algorithm with Hadoop, while CloudAligner is designed to process longer reads, and demonstrates better quality and
throughput than CloudBurst. However, both algorithms use Map/Reduce, in which the map function performs filtering
and sorting, and the reduce function performs summary operation. In this process, a lot of Disk I/O arises as the intermediate
results are saved to the local disk and the final result to the HDFS in the process of the mapping and reduction functions,
respectively. As a result, the two algorithms are unable to ensure a fast throughput. Although Hadoop using MapReduce
is designed to process big data sets, it may not be suitable for algorithms requiring a high throughput.

3. Graph-based sequence alignment

Fig. 1 presents an overview of the BulkAligner algorithm suggested in this paper. BulkAligner comprises two steps. In the
first step, each slave transforms the original reference sequence data into graph-form data, and builds the graph-form data
into its own memory (Section 3.1). In the second step, the client sends read queries to each slave and the latter perform
sequence alignment according to the read queries (Section 3.2). Finally, these results are aggregated at the client (proxy)
level.

3.1. Building the reference graph

To build a reference graph for each slave, we convert the original reference sequence data into a graph representation data
format similar to the de-bruijn graph, as shown in Fig. 2. We trim the reference sequence k � 1 times (where k = the length of
the sequence fragment), and divide each trimmed sequence into k-mer sequence fragments in order to obtain the graph-
form data. The nodes indicate the k-mer sequence fragments and are indexed so as to be accessed quickly in each slave.
An edge is created between two nodes when their k-mers are adjacent in the reference sequence. (In other words, an edge
represents a concatenation of two k-mers.) Each edge includes offset information which indicates the position of the adja-
cent k-mers in the reference. For example, in Fig. 2, the AAC ? CTT edge has offsets 1, 10. Offset 1 means the [0–5] position in
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Fig. 1. Overview of BulkAligner. The reference graph-building step is summarized in step 1, and the sequence alignment step is summarized in step 2.
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the reference sequence, and offset 10 represents the [9–14] position in the reference sequence. Note that 12 offsets and 11
edges are generated from the 18 bp reference sequence. The numbers of generated edges and offsets can differ from one
another if more than one offset corresponds to the same edge.

When the length of the reference genome is LG, the maximum numbers of nodes and edges in the reference graph are 4k

and min (42k, LG � 2k), respectively. For example, if k is set to 7, a reference graph for the human genome (3G bp) will contain
at most 47 (= 32,768) nodes and 414 (= 256 mega) edges. The 3G offsets are generated from the reference genome and each
edge contains an average of 12 offsets. When k is 8, there are at most LG � 2k edges (*416 > 3G � 2k), and all edges contain
only one offset if the number of edges is LG � 2k. The space and time complexity of the reference graph construction is O(LG).
The k trims can be processed by sliding a window of 2k size.
3.2. Sequence alignment

The sequence alignment for the read queries is divided into three sub-steps. In the first sub-step, the read graph is
extracted from the reference graph (Section 3.2.1). In the second sub-step, we identify the longest paths allowing n-hops
in the obtained read graph as candidates for the final alignment (Section 3.2.2). In the last sub-step, we perform glocal align-
ment for the candidates in order to find the best results (Section 3.2.3). The process is described in detail below.
3.2.1. Extracting the read graph from the reference graph
We decompose the read query into k-mer units in order to generate a read graph like the reference graph. Each k-mer

sequence then becomes a node in the read graph and is used to find the corresponding sequence in the reference graph. After
extracting the k-mer nodes, the edge structure is extracted from the reference graph. Fig. 3 illustrates the read graph extrac-
tion process. In this example, the read sequence has a substitution and deletion at the 7th and 16th bases, respectively. The
substitution and deletion create ‘‘missing edges’’ in the extracted graph. These missing edges will be addressed in the longest
path-finding step (Section 3.2.2).

The eukaryote genome features repeats, characterized as multiple copies with very similar genomic content. Some repeat
sequences include more than hundreds of thousand matches in the reference sequence. When extracting the read graph
from the reference graph, if the entire offset information is copied from the reference graph, some of the edges from the
repeat regions can contain a large number of offsets. These repeats exponentially increase the number of combinations in
the longest path-finding step. For this reason, we remove the offsets exceeding a certain threshold (n-offset).
3.2.2. Finding candidates using the longest paths
After extracting the read graph from the reference graph, BulkAligner identifies the longest paths in the read graph. A path

is defined as a sequence of edges, and the length of a path is defined as the distance from the start position of the first node to
the last position of the last node in the path. Each edge in the initial read graph can be regarded as a path of 2k length.
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Given a read graph G = (N, E), a set of nodes N = {no, n1, n2 . . . , nj�1} (with j: number of nodes in the read graph G), a set of
edges E = {e1:n0n1, e2:n1n2 . . . , ej�1: nj�2nj�1}, and each edge contains a set of offsets.

BulkAligner identifies the longest paths starting from each edge in E. A new path is created from a single edge. The closest
connectable edge from the contained edges in the path is then searched for, and is added to the path repeatedly. If ox and oy

represent the offsets of edges ei and ej, respectively, then both ei and ej are connectable if the following two rules are satisfied:

Connectivity rule (1) {(ei�ox, ej�oy) |ei�ox + k 6 ej�oy} – Ø (k: length of the sequence fragment k-mer).
Connectivity rule (2) {(ei�ox, ej�oy) |ej�oy � ei�ox < LR} – Ø (LR: length of the read).

Rule 1 means that at least one offset of the former edge ei should be less than one offset of the latter edge ej. The addition
of k enables the calculation of the end offsets of the former edge. Rule 2 means that at least one pair of offsets between the
edges has a smaller distance than the length of the read.

By applying the connectivity concept, we substitute the alignment problem with that of constructing the longest path by
concatenating connectable edges. Moreover, in order to identify a path covering most of the read graph, we adopt a ‘‘hop’’
concept as our search scope for finding the next edge. As mentioned in Section 3.2.1, polymorphisms in the read can cause
discontinuous offsets and a fragmented read graph. Therefore, if two edges in the read graph are not connectable, we jump to
the next edge with a jump size of 1 � n (with n: the threshold value of an n-hop). If an edge can be visited from the last edge
of a path under n hops, the path and the edge are connectable, and we add a virtual edge between the last edge of the path
and the newly-found edge. When an edge is inserted into the path, only the offsets satisfying the connectivity rules survive.

Table 1 describes the above process in detail. In order to obtain candidates, we create a path list object (Table 1, line 1)
before finding the longest path for each edge in the read graph. We create a path object to store both the list of edges and the
polymorphism information (line 4). We identify the connectivity between the current edge and the target edge that is less
than n-hops from the current edge (line 10). If there is a connectable edge, we add the target edge to the path object and
set the current edge to the added target edge. If a polymorphism exists between edges, we store the information of the poly-
morphism into the path object. If there is no possibility of a connection, we add one to the hop. We repeat the above process
until the value of hop equals n-hop (the threshold value), or there are no more target edges (lines 9–18).

When the value of the threshold is 3, we compare the possibility of a connection below 3 hops from e1. In Fig. 4, because
both e2 and e3 are not connectable to e1, we compare e1 with e4, the next edge from e3 (the offsets of e1 and e4 are 1, 51 and 10,
60, respectively). Since e4 is a node less than 3 hops from e1 and the two edges are connectable, we add a virtual edge v1 from
the node ATG of e1 to the node TGA of e4, and only the corresponding offsets are included in the path. In the next step, e5 is a
missing edge and e6 is an edge below 2 hops from e4. Therefore, we compare the possibility of a connection between e4 and e6



Table 1
Pseudo-code for finding the longest paths.

Algorithm: Finding the longest paths of BulkAligner

Input: n-hop, n-candidate, read graph G
Output: candidates
1. create a path list object PL
2. repeat each edge E in G
3. curEdge E
4. create a new path object P
5. add curEdge to P
6. while (curEdge != last edge of G)
7. hop 1
8. targetEdge curEdge + hop // jump hop times from curEdge
9. while (hop <= n-hop AND target edge ! = null)
10. if (connectable (curEdge, targetEdge))
11. add targetEdge to P
12. curEdge targetEdge;
13. break
14. else
15. hop hop + 1
16. targetEdge curEdge + hop
17. end if
18. end while
19. curEdge curEdge + 1
20. end while
21. add P to path list PL
22. end for
23. call sortLongestPaths (PL, G)
24. candidates = getCandidate (PL, n-candidate)
25. return candidates
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(offsets of 10, 60 and 17, 67, respectively). Another virtual edge, v2, is added from node TGT to node TGG. Finally, a path con-
taining {e1, v1, e2, v2, e6} is stored as one of the candidates.

After identifying the longest path for each node in the read graph, we order them by path length and choose the top
n-candidates from the longest paths list (lines 23–25).

We now discuss the time complexity of the longest paths-finding algorithm. The longest paths-finding algorithm is an
important stage of our method, and consumes most of the processing time. The numbers of offsets in the edges and in
the paths represent a major complexity factor for the algorithm. Let us assume that two paths or edges contain m and n off-
sets, respectively. Keeping the offsets of each path or edge in ascending order allows us to finish the connectivity test for the
two paths (or edges) with (m + n) comparisons instead of (m � n). Note that the offsets are already sorted when the edges are
created from the referenced sequence using the sliding window. In addition, when a new path is created by including con-
nectable edges, only the continuous offsets survive. Thus, the cost of the connectivity test between the lengthened path and
remaining edges gradually decreases as the length of the path increases.

Before analyzing the complexity of the longest path-finding algorithm, a few terms need to be defined. Assuming that the
length of the reference genome is LG, and the length of the read is LR, the number of nodes in the read graph will be LR/k, and
the number of edges will be (LR/k) � 1. The average number of offsets per edge (corresponding to a 2k sequence) will be LG/
42k.

We first perform an analysis for a best-case scenario in which every pair of adjacent edges is connectable. In the first con-
nectivity test between the first edge and the second edge, (LG/42k + LG/42k) comparisons are performed. In the next test, a
newly-created path with 3k length and a third edge are examined, and (LG/43k + LG/42k) comparisons are undertaken. The
total number of connectivity tests is (LR/k) � 1, and the cost of the best-case scenario is therefore as follows.
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LG
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The above cost function has two terms, and the right term is a dominant factor in a usual case. If k is greater than 6 in the
human reference genome, the denominator for the left term (418 = 64G) will become much larger than LG (3G), and the effect
of the left term will be negligible.

Second, we consider a worst-case scenario, in which no edges are connectable. In this case, multiple connectivity tests are
performed without a decrease in the number of offsets. Each test requires (LG/42k + LG/42k) comparisons. Assuming that
the algorithm always hops to the last edges in the worst-case scenario, it therefore performs the connectivity test



Fig. 4. Finding the longest paths in the read graph. This figure shows the addition of new virtual paths into the extracted initial graph, allowing errors below
n-hops, as well as the obtained candidates. The figure describes a 3-hop case. The blue line indicates the relation between the sequence fragments, and the
blue dotted line and diagonal rectangles represent gaps or mismatches. The green dotted line is the range of the hop allowed in the node. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(LR/k) � 2, (LR/k) � 3, (LR/k) � 4, . . . , 1, 0 times for the 1st, 2nd, 3rd, . . . , (LR/k) � 2th, (LR/k) � 1th edges, respectively. The cost
of the worst case is therefore as follows.
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As demonstrated above, the complexity of the longest paths-finding algorithm decreases exponentially as k increases. The
analysis of the computational costs for BulkAligner is described in Section 3.3.
3.2.3. Glocal alignment
Glocal alignment is employed to identify the best candidate with the highest score among the candidates obtained from

the previous process. Glocal alignment is an algorithm combining global alignment [23] and local alignment [36]. This algo-
rithm constructs an m � n matrix (where m and n are the lengths of the two sequences, respectively), and performs sequence
alignment using dynamic programming.

Fig. 5 provides an example of glocal alignment. Glocal alignment performs local alignment and global alignment depend-
ing on the situation. Global alignment is used for alignment between the seeds (exact matched sequences), while local align-
ment is used for the front of the seeds at the head and the rear of the seeds at the tail. Referring to the example in Fig. 4, e1, e4,
and e6 are the seeds, and v1 and v2 are the middle areas of the seeds.
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Fig. 5. Glocal alignment for polymorphisms including insertions, deletions, and substitutions. The figure provides an example of glocal alignment according
to the error position. ‘‘Seed’’ indicates the sequence fragments connected correctly, without polymorphisms. The diagonal rectangles are unmatched regions
due to gaps or mismatches, and the dotted red arrows and double-headed blue arrows are parts of the local alignment and global alignment, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3. Time complexity analysis of BulkAligner and existing methods

In this section, we discuss the time complexity of BulkAligner and the existing methods exploiting suffix array as an index
structure.

Suffix array can be used as an index structure for the exact matching of k-mer with O(k) time complexity. In order to align
the reads allowing indels (insertions and deletions) and substitutions, BWA and Bowtie2 exploit the seed and extend para-
digm. They find the seed(s) with suffix array first, and extend the seed(s) using local alignment.

BWA consists of three different algorithms: BWA-backtrack, BWA-SW, and BWA-MEM. BWA-MEM is the latest algorithm,
and its detailed algorithm has not been published yet. We therefore base our complexity comparison on BWA-backtrack.
BWA-backtrack extracts a seed from the front of the read and maps the seed, allowing indels and substitutions. During
the seed mapping, it traverses 9 cases for every position of the seed (insertion of A, T, G, C at current position, deletion at
current position, and substitution at current position). As it usually allows two differences in the seed at most, its seed-map-
ping cost represents a maximum of 92 � k (seed length). After seed mapping, it converts the SA (suffix array) range of the
seed into real offsets and extends each offset using local alignment.

Bowtie2 extracts seeds with regular intervals and maps all seeds in an exact manner. It then determines priority accord-
ing to the SA range of the seeds. Finally, part of the SA ranges are converted into real offsets and extended using local align-
ment. The seed-mapping cost of Bowtie2 is O(k).

The read mapping algorithms using suffix array extend individual seeds rather than connect them, meaning that a rela-
tively high number of offsets are included at the extension stage. Particularly, the seeds in BWA-backtrack contain large sets
of offsets as they allow indels and substitutions into the seed mapping. Due to these larger numbers of offsets, more local
alignment is executed. The cost of the local alignment is O(LR

2).
On the other hand, our proposed method maps each seed in O(1) time, using a hash index. Although it involves additional

costs for creating the paths from the seeds, the number of offsets finally included and the number of executions of local align-
ment are minimized. SA-based algorithms such as Bowtie2 typically do not connect the seeds, as the offsets converted from the
SA range are not in sorted order. If the offsets are not sorted, the cost of the connectivity test increases to O(mn), or an additional
sorting process is needed. Our method maintains the offsets in ascending order and performs the connectivity test in O(m + n).

Table 2 compares the costs of the essential steps in the three algorithms. nk and np represent the number of k-mers and
the number of paths, respectively. Ok, Op and Ogap represent the average number of offsets for a k-mer, a path, and a seed in
BWA-backtrack, respectively. Direct comparison of the costs is difficult, as it is hard to estimate np, Op, Ogap and the exact
length of the sequence for local alignment.
4. Experimental results and discussion

4.1. Experimental environments

A number of experiments were conducted to measure the accuracy and throughput of BulkAligner, CloudBurst, and
CloudAligner. To this end, a Trinity cluster with 6 nodes and one client, and a Hadoop cluster with 6 nodes, were built.
Table 2
Compared algorithm costs.

BulkAligner BWA-backtrack Bowtie2

Seed length (k, default) 7 bp 32 bp 22 bp
Number of k-mers (seeds) nk 1 nk

Cost for seed mappings nk � 1 1 � 92k nk � k
(Hashing) (Gapped mapping using SA) (Exact mapping using SA)

Cost for create path nk
2 � Ok – –

(Worst case)
Number of local alignment executions np � Op 1 � Ogap nk � Ok

(np < nk, Op < Ok) (Ok < Ogap)
Length of sequence for local alignment Part of read Whole read Whole read
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All of the experiments were performed on the same machines. Each machine had a 1 TB HDD, 32 GB RAM, and a 3.40 GHz
Intel R i73770 processor. The operating systems were 64-bit Windows Server 2008 R2 Enterprise for Trinity, and Ubuntu
12.04.2 for Hadoop.

4.2. Data and measurement descriptions

We simulated reads for chromosome 1 of the human genome (hg18) using the dwgsim program included in the SAM tools
package. The format was FASTQ. The lengths of the read sequences were 40, 60, 80, 100, and 120 bp (‘‘base pair’’, i.e., length
of the sequence). For the 120 bp read, we built 6 data sets: 0.5 million read sequences, 1 million read sequences, 1.5 million
read sequences, 2 million read sequences, 2.5 million read sequences, and 3 million read sequences.

We employed the elapsed time and quality to measure the performance of the algorithms. The elapsed time was used to
assess the throughput. The elapsed time was computed as the total run-time value obtained by adding the alignment time
and the Network and Disk I/O time. In order to calculate the quality, we used recall and precision, which were defined as
follows:
Recall ¼ mc
mc þmiþmu

ð1Þ

Precision ¼ mc
mc þmu

ð2Þ
The quantity mc represents the number of reads mapped correctly to the place where they should be mapped. mi is the num-
ber of reads mapped incorrectly to a place where they should not be mapped. mu is the number of reads unmapped to the
place where they should be mapped.

Both recall and precision are important when comparing the quality of the sequence alignment. We converted both the
precision and recall into one single measure, the f1-score [28], which was defined as follows:
f 1 ¼ 2� Recall� Precision
Recallþ Precision

ð3Þ
4.3. BulkAligner performance

The experiments in this section are divided into two parts, so as to analyze the performance changes depending on the
value of the parameters of the BulkAligner. The first part evaluates the performance of the algorithm at the reference graph-
building stage. The second part evaluates its performance at the sequence alignment stage.

The first part involves a comparison of the quality according to the k values. We set the value of k to 5, 6, 7, and 8. The
value of k indicates the size of the sequence fragment when generating the read graph and the reference graph. The more k
increases, the more the number of nodes and the number of edges per node in the entire graph increase. However, the num-
ber of offsets connecting the sequence fragments diminishes, and the number of offsets per edge eventually decreases. For
example, when k = 5 (8), the number of nodes goes up to 45 (48). As a result, when k = 8, the number of offsets per edge is
smaller than when k = 5. Therefore, the more k increases, the less processing speed is available for identification of the lon-
gest paths. On the other hand, as k decreases, the number of nodes is reduced and the number of offsets per edge is increased.
As a result, when looking for the longest paths, the number of combinations between the offsets is increased.

We set the value of the repeat threshold in the experiment to 200, and evaluate the quality according to the read length
and to k. In Fig. 6(a), when k is 5, the results show low quality as the number of nodes is small, and the edges for which the
number of offsets are bigger than the repeat threshold are removed. When k is 6, the results demonstrate better quality than
when k is equal to 8 at 40 bp. Thus, it can be observed that the results show higher quality when the read is shorter. This is
explained by the fact that as k increases, the number of nodes in the read graph decreases. In that case, removing just one
node because of polymorphism causes a large loss of information. On the other hand, it is possible to obtain better quality
when both k and the length of the read are long. This is due to the fact that the number of nodes in the read graph increases.
Therefore, if a node is lost to polymorphism, the information loss is small. In addition, because the number of offsets per edge
is small, the discarded information is reduced. In conclusion, as k increases, we obtain better quality for long reads. However,
as the number of nodes increases exponentially when the k of the reference graph increases, the size of the reference graph
increases while the quality decreases for very short reads.

Next, we evaluate the performance of BulkAligner at the sequence alignment stage. In this step, the quality is compared
using a variety of parameters including the offset threshold, the number of candidates, and the interval count.

First, with the read graph extracted from the reference graph, we perform experiments with threshold values (n-offset) of
5, 10, 50, 100, 200, 300, 500, and 1000. Generally, the alignment quality is degraded when the n-offset is too small or too
large. When the value of the offset threshold is too small, a large amount of information for the sequence alignment is
removed. Conversely, when the value of the offset threshold is too large, the edges from the repeat reads contain huge num-
bers of offsets, which cause many ambiguous alignments. Moreover, the large number of offsets generates excessive offset
combinations, which increases the computation time for identification of the longest paths.
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Fig. 6. Evaluation of the BulkAligner quality according to the f1-score. (a) f1-score according to the k-mer fragment size and read length. (b) f1-score
according to the number of offsets per edge (n-offset). (c) f1-score according to the number of candidates (n-candidate). (d) f1-score according to the interval
threshold (n-hop).
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After building the read graph, we compare the performance quality according to the n-candidate value obtained at the
longest path stage (Fig. 6(c)). The alignment quality is compared with candidate threshold values (n-candidate) of 5, 10,
20, 30, 50, 100, 150, 200, and 250. The interval count (n-hop) is fixed to 7. As a result, as the number of candidates increases,
the quality shows a nearly constant value of 0.97. As a large number of candidates also increases the total execution time, we
use a candidate threshold of 100 in the subsequent experiments.

Finally, we test the interval count indicating the scope of the hops. Using a fixed value for the number of candidates (100),
we vary the value of the interval count (n-hop) between 2 and 11 (Fig. 6(d)). When the interval count is h, any two nodes
h � 1 hops apart are examined in order to find the longest paths. In other words, these two nodes can be connected even
though the h � 1 nodes between them have errors. Therefore, the alignment quality is proportional to the interval count.
We show that the quality reaches a maximum value of 0.97 when the interval count is 7.

Lastly, BulkAligner occupies 2.7 GB of memory in each slave.
The values of the parameters used in the performance comparison are summarized in Table 3.

4.4. Comparison with existing methods

First of all, we evaluate BulkAligner and state-of-the-art, stand-alone algorithms with the same simulated read data
(100 bp, 1 M). BWA-backtrack and Bowtie2 are selected as the stand-alone algorithms. We compare the recall, precision,
and f1-score of each algorithm for the dataset.

Table 4 shows the evaluation results for BulkAligner and the stand-alone algorithms. BulkAligner demonstrates a better
performance than BWA-backtrack and Bowtie2.
Table 3
Parameters and values used in the BulkAligner comparative experiment.

Step Parameter Description Value

Reference graph building k Sequence fragment unit 8

Sequence alignment of read queries Offset threshold Number of offsets per edge(n-offset) 100
Candidate threshold Number of candidates for glocal alignment (n-candidate) 100
Interval threshold Value of allowed interval (n-hop) 7



Table 4
Performance comparison between BulkAligner and existing stand-alone algo-
rithms (100 bp simulated read).

Algorithm Recall Precision f1-score

BulkAligner 96.85 97.02 96.94
BWA-backtrack 94.24 98.05 96.11
Bowtie2 96.34 97.02 96.68

Table 5
Parameters and values used in the CloudBurst and CloudAligner comparative experiments.

Algorithm Parameter Description Value

CloudBurst k Number of mismatch differences to allow (higher numbers require more time) 8
Allowdifferences 0: mismatches only, 1: indels as well 1
Filteralignments 0: all alignments, 1: only report unambiguous best alignment 0 or 1
#mappers Number of mappers to use (suggested: #processor-cores ⁄ 10) 240
#reducer Number of reducers to use (suggested: #processor-cores ⁄ 2) 48
#fmappers Number of mappers for filtration alg (suggested:#processor-cores) 24
#freducers Number of reducers for filtration alg (suggested:#processor-cores) 24
Blocksize Number of queries and reference tuples to consider at a time in the reduce phase (suggested: 128) 128
Redundancy Number of copies of low complexity seeds to use (suggested: # processor cores) 24

CloudAligner Maxmismatches Number of mismatches 8
Seed num Number of seeds (suggested : 11) 11
Seed weight Weight of seeds (suggested : 3) 3
Map mode 0 : map, 1: bisulfite, 2: pair end 0
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We then evaluate the BulkAligner performance against that of two existing algorithms, CloudBurst v1.1.0 and CloudAlig-
ner v1.9. First, we conduct preprocessing (described later in this section) for the input data. Next, we find the optimal param-
eters for CloudBurst and CloudAligner. Finally, we compare the quality and throughput of each algorithm using the same
dataset in the same experimental environment.

We perform pre/post-processing in order to match the input and output formats of each algorithm. CloudBurst and
CloudAligner use FASTA [27] for the input, while BulkAligner uses FASTQ. Therefore, we convert the data in FASTQ format
to FASTA format. When FASTQ is transformed into FASTA, the quality value of the sequence in the FASTQ format is deleted,
and the size of the data is approximately reduced to 60% (e.g., 1,284 MB ? FASTA: 769 MB). Note that the reduced size of the
input data affects the total network transfer time.

BulkAligner uses the SAM format for the output, as the latter contains more sequence alignment information than the
Browser Extensible Data (BED) [29] format. However, due to this additional information, the size of the SAM format is about
10 times greater than that of the BED format. We directly convert the BED format used by both algorithms by adding the
default values of the SAM format that are not contained in the BED format. Finally, SAM is used to compare the final results
using Dwgsim-eval.
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Table 6
Quality and throughput of each algorithm.

Algorithm Quality (f1-score) Throughput (elapsed time, 2 M, ms)

BulkAligner 0.97 154,542
CloudBurst (filteralignments: 0) 0.73 8,590,843
CloudBurst (filteralignments: 1) 0.66 386,767
CloudAligner 0.97 1,432,351
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In the pre/post-processing, the size of the input/output data of BulkAligner is larger than that of both CloudBurst and
CloudAligner. This feature of BulkAligner causes more Network I/O and Disk I/O than the other algorithms. However, con-
sidering future extensibility, BulkAligner chooses formats that contain more information (FASTQ and SAM).

We adjust the parameters in order to determine the optimal parameters for CloudAligner and CloudBurst. The parameters
and values used for CloudBurst and CloudAligner are described in Table 5. The values of the parameters are obtained by eval-
uating the quality and throughput at different numbers of mismatches, with 120-bp reads. CloudBurst and CloudAligner
show a tendency toward increased quality and a decreased throughput as the number of mismatches increases. Therefore,
we perform experiments changing the value of the number of mismatches from 0 to 9 in order to obtain a high throughput
with high quality. At 0.73, CloudBurst shows the highest quality when the value of filteralignments is 0 and the number of
mismatches is 8. However, it shows a very low throughput as it reports all the alignment results. For example, an input of 1
(2) million reads generates an output of 56 (113) million alignments. A value of filteralignments set to 1 produces the highest
quality (0.66), allowing for 4 mismatches. This also gives a low recall and a high throughput, as only the unambiguous, best
alignments are reported. Conversely, CloudAligner achieves the highest quality (0.97) when the number of mismatches is 8
or 9. We therefore set the mismatch value to 8, as it generates a better throughput with the same quality.

In order to evaluate the quality and throughput of the three algorithms, BulkAligner uses the values of the parameters in
Table 3, while CloudBurst and CloudAligner use the values of the parameters in Table 5. We select simulation read data num-
bers of 0.5 M, 1 M, 1.5 M, 2 M, 2.5 M and 3 M for 6 nodes showing the same performance. The experimental results are sum-
marized in Fig. 7 and Table 6. In Fig. 7, the value of the throughput of CloudBurst (filteralignments: 0) is not considered, as
CloudBurst (filteralignments: 0) shows a significantly lower throughput than BulkAligner, CloudBurst (filteralignments: 1),
and CloudAligner. The experimental results demonstrate that BulkAligner obtains at least a 0.24 (and up to 0.31) higher qual-
ity than CloudBurst. Moreover, BulkAligner shows a 1.8–51 times better throughput than CloudBurst. As compared with
CloudAligner, BulkAligner achieves a 7.8–24 times better throughput, with a same quality of 0.97. In summary, BulkAligner
produces a better quality and throughput than the other algorithms.

Finally, in order to verify the scalability – an important feature of distributed system-based algorithms, we perform
experiments for 120 bp, 2 M reads by increasing the number of slaves from 3 to 7. These experiments show that the elapsed
time decreases by simply adding machines. From this result, we can conclude that BulkAligner is scalable (Fig. 8). The
CloudAligner throughput is not considered in the graph in Fig. 8, as its elapsed time shows a large difference with those
of BulkAligner and CloudBurst (filteralignments: 1).
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5. Conclusion

With the advent of NGS technology, the amount of available sequence data has grown exponentially. Due to the vast
amounts of data and the repeat issue, existing single machine-based sequence alignment algorithms have sacrificed the
alignment quality in order to achieve an acceptable throughput. While this trade-off is unavoidable, it can be mitigated
by exploiting the high computing power available in distributed systems.

In this study, we surveyed the existing distributed systems in order to identify appropriate systems for the sequence
alignment problem. Hadoop, a widely-used distributed system, makes it difficult to obtain a high throughput in our domain
as it exploits the MapReduce platform, which presents the disadvantages of saving intermediate results to its own local disk
and converting data into a format that can be processed by the Map/Reduce function. Conversely, Trinity can obtain a better
throughput than Hadoop, as it is based on an in-memory cluster and can transform/process network-form data directly. For
these reasons, we solved the sequence alignment problem using Trinity. To our knowledge, no prior study has tried to per-
form sequence alignment algorithms on graph-based, in-memory distributed systems.

We suggested a BulkAligner algorithm capable of dealing with next-generation sequence data in a parallel manner on
Trinity. BulkAligner converts original reference sequence data into de-bruijn-based graph-form, and extracts the read graph
from the reference graph using a reads sequence. BulkAligner then identifies the longest paths allowing hops in the read
graph, and chooses the top n longest paths as candidates. Finally, the best results are selected among the candidates through
glocal alignment.

In this study’s experiments, BulkAligner demonstrated an effective sequence alignment performance allowing polymor-
phisms for longer reads. We compared BulkAligner with two Hadoop-based sequence alignment algorithms, using the cri-
teria of quality and throughput. Despite the disk and network I/O loss caused by the large size of the input/output format in
BulkAligner, the latter showed a dramatic improvement on the throughput of existing algorithms, with a similar or higher
quality. The scalability was also proven according to the number of worker nodes in Trinity.
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